Pseudo-Prikry sequences
(Joint and ongoing work with Spencer Unger)

Chris Lambie-Hanson

Department of Mathematics
Bar-Ilan University

Arctic Set Theory
Kilpisjärvi, Finland
January 2017
I: Historical background
Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote \mathbb{P}_U, such that:

1. \mathbb{P}_U is cardinal-preserving;
2. forcing with \mathbb{P}_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ;
3. $\langle \gamma_i \mid i < \omega \rangle$ diagonalizes U, i.e., for all $X \in U$, for all sufficiently large $i < \omega$, $\gamma_i \in X$.

\mathbb{P}_U is known as Prikry forcing (with respect to U).

There is now a large class of variations on Prikry forcing, known collectively as Prikry-type forcings, which add diagonalizing sequences to a large cardinal κ, to a set of the form $\mathbb{P}_\kappa(\lambda)$, or to a sequence of such objects.
Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote P_U, such that:

1. P_U is cardinal-preserving;
Prikry forcing

Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote \mathbb{P}_U, such that:

1. \mathbb{P}_U is cardinal-preserving;
2. forcing with \mathbb{P}_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ.
Prikry forcing

Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote \mathbb{P}_U, such that:

1. \mathbb{P}_U is cardinal-preserving;
2. forcing with \mathbb{P}_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ;
3. $\langle \gamma_i \mid i < \omega \rangle$ diagonalizes U, i.e., for all $X \in U$, for all sufficiently large $i < \omega$, $\gamma_i \in X$.

\mathbb{P}_U is known as Prikry forcing (with respect to U). There is now a large class of variations on Prikry forcing, known collectively as Prikry-type forcings, which add diagonalizing sequences to a large cardinal κ, to a set of the form $\mathbb{P}_\kappa(\lambda)$, or to a sequence of such objects.
Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote \mathbb{P}_U, such that:

1. \mathbb{P}_U is cardinal-preserving;
2. forcing with \mathbb{P}_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ;
3. $\langle \gamma_i \mid i < \omega \rangle$ diagonalizes U, i.e., for all $X \in U$, for all sufficiently large $i < \omega$, $\gamma_i \in X$.

\mathbb{P}_U is known as Prikry forcing (with respect to U).
Prikry forcing

Suppose κ is a measurable cardinal and U is a normal measure on κ. There is a forcing poset, which we denote P_U, such that:

1. P_U is cardinal-preserving;
2. forcing with P_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ;
3. $\langle \gamma_i \mid i < \omega \rangle$ diagonalizes U, i.e., for all $X \in U$, for all sufficiently large $i < \omega$, $\gamma_i \in X$.

P_U is known as Prikry forcing (with respect to U). There is now a large class of variations on Prikry forcing, known collectively as Prikry-type forcings, which add diagonalizing sequences to a large cardinal κ, to a set of the form $\mathcal{P}_\kappa(\lambda)$, or to a sequence of such objects.
Outside guessing of clubs

Sequences approximating Prikry sequences appear in abstract settings, as well. In these cases, we may not have a normal measure on the relevant cardinal, so we consider sub-filters of the club filter.
Outside guessing of clubs

Sequences approximating Prikry sequences appear in abstract settings, as well. In these cases, we may not have a normal measure on the relevant cardinal, so we consider sub-filters of the club filter.

Theorem (Džamonja-Shelah, [3])

Suppose that:

1. V is an inner model of W;
2. κ is an inaccessible cardinal in V and a singular cardinal of cofinality θ in W;
3. $(\kappa^+)^W = (\kappa^+)^V$;
4. $\langle C_\alpha \mid \alpha < \kappa^+ \rangle \in V$ is a sequence of clubs in κ.
Outside guessing of clubs

Sequences approximating Prikry sequences appear in abstract settings, as well. In these cases, we may not have a normal measure on the relevant cardinal, so we consider sub-filters of the club filter.

Theorem (Džamonja-Shelah, [3])

Suppose that:

1. V is an inner model of W;
2. κ is an inaccessible cardinal in V and a singular cardinal of cofinality θ in W;
3. $(\kappa^+)^W = (\kappa^+)^V$;
4. $\langle C_\alpha \mid \alpha < \kappa^+ \rangle \in V$ is a sequence of clubs in κ.

Then, in W, there is a sequence $\langle \gamma_i \mid i < \theta \rangle$ of ordinals such that, for all $\alpha < \kappa^+$ and all sufficiently large $i < \theta$, $\gamma_i \in C_\alpha$.
Generalized outside guessing of clubs

A similar theorem is proven by Gitik [4], and it is extended by Magidor and Sinapova [5], who also prove the following generalization.

Theorem (Magidor-Sinapova, [5])

Suppose that $n < \omega$

1. V is an inner model of W;
2. κ is a regular cardinal in V and, for all $m \leq n$, $(\kappa + m)_V$ has countable cofinality in W;
3. $(\kappa + n + 1)_W = (\kappa + n + 1)_V$;
4. $\langle D_\alpha | \alpha < \kappa + n + 1 \rangle \in V$ is a sequence of clubs in $P_{\kappa + n + 1}$.

Then, in W, there is a sequence $\langle x_i | i < \omega \rangle$ of elements of $(P_{\kappa + n + 1})_V$ such that, for all $\alpha < \kappa + n + 1$ and all sufficiently large $i < \omega$, $x_i \in D_\alpha$.
Generalized outside guessing of clubs

A similar theorem is proven by Gitik [4], and it is extended by Magidor and Sinapova [5], who also prove the following generalization.

Theorem (Magidor-Sinapova, [5])

Suppose that $n < \omega$ and:

1. V is an inner model of W;
2. κ is a regular cardinal in V and, for all $m \leq n$, $(\kappa^+)^V$ has countable cofinality in W;
3. $(\kappa^+)^W = (\kappa^{+n+1})^V$;
4. $\langle D_\alpha \mid \alpha < \kappa^{+n+1} \rangle \in V$ is a sequence of clubs in $\mathcal{P}_\kappa(\kappa^+)$.
Generalized outside guessing of clubs

A similar theorem is proven by Gitik [4], and it is extended by Magidor and Sinapova [5], who also prove the following generalization.

Theorem (Magidor-Sinapova, [5])

Suppose that \(n < \omega \) and:

1. \(V \) is an inner model of \(W \);
2. \(\kappa \) is a regular cardinal in \(V \) and, for all \(m \leq n \), \((\kappa^+)^V \) has countable cofinality in \(W \);
3. \((\kappa^+)^W = (\kappa^{n+1})^V \);
4. \(\langle D_\alpha \mid \alpha < \kappa^{n+1} \rangle \in V \) is a sequence of clubs in \(\mathcal{P}_{\kappa}(\kappa^n) \).

Then, in \(W \), there is a sequence \(\langle x_i \mid i < \omega \rangle \) of elements of \((\mathcal{P}_{\kappa}(\kappa^n))^V \) such that, for all \(\alpha < \kappa^{n+1} \) and all sufficiently large \(i < \omega \), \(x_i \in D_\alpha \).
Applications

Theorem (Cummings-Schimmerling in the context of Prikry forcing, [2])

Suppose that V is an inner model of W, κ is inaccessible in V and a singular cardinal of countable cofinality in W, and $(\kappa^+)^W = (\kappa^+)^V$.

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, $2^{\lambda} = \lambda^+$, and P is a λ^+-c.c. forcing notion of size $\leq \lambda^+$. Suppose moreover that, in V_P, λ is a singular ordinal and $|\lambda| > \text{cf}(\lambda)$.

Then there is a λ^+-Souslin tree in V_P.
Theorem (Cummings-Schimmerling in the context of Prikry forcing, [2])

Suppose that V is an inner model of W, κ is inaccessible in V and a singular cardinal of countable cofinality in W, and $(\kappa^+)^W = (\kappa^+)^V$.

Then $\Box_{\kappa, \omega}$ holds in W.

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, $2^\lambda = \lambda^+$, and P is a λ^+-c.c. forcing notion of size $\leq \lambda^+$. Suppose moreover that, in V_P, λ is a singular ordinal and $|\lambda| > \text{cf}(\lambda)$.

Then there is a λ^+-Souslin tree in V_P.
Applications

Theorem (Cummings-Schimmerling in the context of Prikry forcing, [2])

Suppose that V is an inner model of W, κ is inaccessible in V and a singular cardinal of countable cofinality in W, and $(\kappa^+)^W = (\kappa^+)^V$.

Then $\Box_{\kappa,\omega}$ holds in W.

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, $2^\lambda = \lambda^+$, and P is a λ^+-c.c. forcing notion of size $\leq \lambda^+$. Suppose moreover that, in V^P, λ is a singular ordinal and $|\lambda| > \text{cf}(\lambda)$.
Applications

Theorem (Cummings-Schimmerling in the context of Prikry forcing, [2])

Suppose that V is an inner model of W, κ is inaccessible in V and a singular cardinal of countable cofinality in W, and $(\kappa^+)^W = (\kappa^+)^V$.

Then $\square_{\kappa, \omega}$ holds in W.

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, $2^\lambda = \lambda^+$, and \mathbb{P} is a λ^+-c.c. forcing notion of size $\leq \lambda^+$. Suppose moreover that, in $V^\mathbb{P}$, λ is a singular ordinal and $|\lambda| > \text{cf}(\lambda)$.

Then there is a λ^+-Souslin tree in $V^\mathbb{P}$.
II: Fat trees and pseudo-Prikry sequences
Fat trees

Definition

Suppose \(\kappa \) is a regular, uncountable cardinal, \(n < \omega \), and, for all \(m \leq n \), \(\lambda_m \geq \kappa \) is a regular cardinal. Then

\[
T \subseteq \bigcup_{k \leq n+1} \prod_{m<k} \kappa_m
\]

is a fat tree of type \((\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle)\) if:
Definition

Suppose κ is a regular, uncountable cardinal, $n < \omega$, and, for all $m \leq n$, $\lambda_m \geq \kappa$ is a regular cardinal. Then

$$T \subseteq \bigcup_{k \leq n+1} \prod_{m < k} \kappa_m$$

is a fat tree of type $(\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle)$ if:

1. for all $\sigma \in T$ and $\ell < \text{lh}(\sigma)$, we have $\sigma \upharpoonright \ell \in T$;
Fat trees

Definition

Suppose κ is a regular, uncountable cardinal, $n < \omega$, and, for all $m \leq n$, $\lambda_m \geq \kappa$ is a regular cardinal. Then

$$T \subseteq \bigcup_{k \leq n+1} \prod_{m < k} \kappa_m$$

is a fat tree of type $(\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle)$ if:

1. for all $\sigma \in T$ and $\ell < \lh(\sigma)$, we have $\sigma \upharpoonright \ell \in T$;
2. for all $\sigma \in T$ such that $k := \lh(\sigma) \leq n$, $\text{succ}_T(\sigma) := \{ \alpha \mid \sigma \frown \langle \alpha \rangle \in T \}$ is $(< \kappa)$-club in κ_k.

Lemma

If C is a club in $P_{\kappa}(\kappa + n)$, then there is a fat tree of type $(\kappa, \langle \kappa + n, \kappa + n - 1, \ldots, \kappa \rangle)$ such that, for every maximal $\sigma \in T$, there is $x \in C$ such that, for all $m \leq n$, $\sup(x \cap \kappa + m) = \sigma(n - m)$.

Fat trees

Definition
Suppose \(\kappa \) is a regular, uncountable cardinal, \(n < \omega \), and, for all \(m \leq n \), \(\lambda_m \geq \kappa \) is a regular cardinal. Then

\[
T \subseteq \bigcup_{k \leq n+1} \prod_{m < k} \kappa_m
\]

is a fat tree of type \((\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle) \) if:

1. for all \(\sigma \in T \) and \(\ell < \text{lh}(\sigma) \), we have \(\sigma \upharpoonright \ell \in T \);
2. for all \(\sigma \in T \) such that \(k := \text{lh}(\sigma) \leq n \), \(\text{succ}_T(\sigma) := \{ \alpha \mid \sigma \upharpoonright \langle \alpha \rangle \in T \} \) is \((\kappa) \)-club in \(\kappa_k \).

Lemma
If \(C \) is a club in \(\mathcal{P}_\kappa(\kappa^{+n}) \), then there is a fat tree of type \((\kappa, \langle \kappa^{+n}, \kappa^{+n-1}, \ldots, \kappa \rangle) \) such that, for every maximal \(\sigma \in T \), there is \(x \in C \) such that, for all \(m \leq n \), \(\sup(x \cap \kappa^{+m}) = \sigma(n - m) \).
Outside guessing of fat trees

Theorem

Suppose that:

1. V is an inner model of W;
2. in V, $\kappa < \lambda$ are cardinals, with κ regular;
3. in W, $\theta < \theta^+ < |\kappa|$, θ is a regular cardinal, and there is a \subseteq-increasing sequence $\langle x_i \mid i < \theta \rangle$ from $(\mathcal{P}_\kappa(\lambda))^V$ such that $\bigcup_{i<\theta} x_i = \lambda$;
4. $(\lambda^+)^V$ remains a cardinal in W;
5. $n < \omega$ and, in V, $\langle \lambda_i \mid i \leq n \rangle$ is a sequence of regular cardinals from $[\kappa, \lambda]$ and $\langle T(\alpha) \mid \alpha < \lambda^+ \rangle$ is a sequence of fat trees of type $\langle \kappa, \langle \lambda_0, \ldots, \lambda_n \rangle \rangle$.
Outside guessing of fat trees

Theorem

Suppose that:

1. V is an inner model of W;
2. In V, $\kappa < \lambda$ are cardinals, with κ regular;
3. In W, $\theta < \theta^+ < |\kappa|$, θ is a regular cardinal, and there is a \subseteq-increasing sequence $\langle x_i | i < \theta \rangle$ from $(\mathcal{P}_\kappa(\lambda))^V$ such that $\bigcup_{i<\theta} x_i = \lambda$;
4. $(\lambda^+)^V$ remains a cardinal in W;
5. $n < \omega$ and, in V, $\langle \lambda_i | i \leq n \rangle$ is a sequence of regular cardinals from $[\kappa, \lambda]$ and $\langle T(\alpha) | \alpha < \lambda^+ \rangle$ is a sequence of fat trees of type $(\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle)$.

Then, in W, there is a sequence $\langle \sigma_i | i < \theta \rangle$ such that, for all $\alpha < \lambda^+$ and all sufficiently large $i < \theta$, σ_i is a maximal element of $T(\alpha)$.
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\).
Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle \) of clubs in \(\lambda_0 \). Let \(X = (\mathcal{P}_\kappa(\lambda))^V \). If \(f : X \to \lambda_0 \) and \(C \subseteq \lambda_0 \) is unbounded, define \(f^C : X \to \lambda_0 \) by \(f^C(x) = \min(C \setminus f(x)) \)
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\). Let \(X = (\mathcal{P}_\kappa(\lambda))^V\). If \(f : X \to \lambda_0\) and \(C \subseteq \lambda_0\) is unbounded, define \(f^C : X \to \lambda_0\) by \(f^C(x) = \min(C \setminus f(x))\).

Work first in \(V\). Fix a sequence \(\langle e_\beta \mid \beta < \lambda^+ \rangle\) such that \(e_\beta : \beta \to \lambda\) is an injection.
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\). Let \(X = (\mathcal{P}_\kappa(\lambda))^V\). If \(f : X \to \lambda_0\) and \(C \subseteq \lambda_0\) is unbounded, define \(f^C : X \to \lambda_0\) by \(f^C(x) = \min(C \setminus f(x))\).

Work first in \(V\). Fix a sequence \(\langle e_\beta \mid \beta < \lambda^+ \rangle\) such that \(e_\beta : \beta \to \lambda\) is an injection.

Define a sequence \(\vec{f} = \langle f_\beta \mid \beta < \lambda^+ \rangle\) of functions from \(X\) to \(\lambda_0\) satisfying:
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\). Let \(X = (\mathcal{P}_\kappa(\lambda))^V\). If \(f : X \to \lambda_0\) and \(C \subseteq \lambda_0\) is unbounded, define \(f^C : X \to \lambda_0\) by \(f^C(x) = \min(C \setminus f(x))\).

Work first in \(V\). Fix a sequence \(\langle e_\beta \mid \beta < \lambda^+ \rangle\) such that \(e_\beta : \beta \to \lambda\) is an injection.

Define a sequence \(\vec{f} = \langle f_\beta \mid \beta < \lambda^+ \rangle\) of functions from \(X\) to \(\lambda_0\) satisfying:

1. for all \(\beta < \gamma < \lambda^+\) and all \(x \in X\), if \(e_\gamma(\beta) \in x\), then \(f_\beta(x) < f_\gamma(x)\);
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\). Let \(X = (\mathcal{P}_\kappa(\lambda))^V\). If \(f : X \to \lambda_0\) and \(C \subseteq \lambda_0\) is unbounded, define \(f^C : X \to \lambda_0\) by \(f^C(x) = \min(C \setminus f(x))\).

Work first in \(V\). Fix a sequence \(\langle e_\beta \mid \beta < \lambda^+ \rangle\) such that \(e_\beta : \beta \to \lambda\) is an injection.

Define a sequence \(\vec{f} = \langle f_\beta \mid \beta < \lambda^+ \rangle\) of functions from \(X\) to \(\lambda_0\) satisfying:

1. for all \(\beta < \gamma < \lambda^+\) and all \(x \in X\), if \(e_\gamma(\beta) \in x\), then \(f_\beta(x) < f_\gamma(x)\);
2. for all \(\gamma \in S_{<\kappa}^{\lambda^+}\), there is a club \(D_\gamma\) in \(\gamma\) such that, for all \(\beta \in D_\gamma\), \(f_\beta < f_\gamma\).
Proof sketch \((n = 0)\)

Our sequence of fat trees is just a sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) of clubs in \(\lambda_0\). Let \(X = (\mathcal{P}_\kappa(\lambda))^V\). If \(f : X \to \lambda_0\) and \(C \subseteq \lambda_0\) is unbounded, define \(f^C : X \to \lambda_0\) by \(f^C(x) = \min(C \setminus f(x))\).

Work first in \(V\). Fix a sequence \(\langle e_\beta \mid \beta < \lambda^+ \rangle\) such that \(e_\beta : \beta \to \lambda\) is an injection. Define a sequence \(\vec{f} = \langle f_\beta \mid \beta < \lambda^+ \rangle\) of functions from \(X\) to \(\lambda_0\) satisfying:

1. for all \(\beta < \gamma < \lambda^+\) and all \(x \in X\), if \(e_\gamma(\beta) \in x\), then \(f_\beta(x) < f_\gamma(x)\);
2. for all \(\gamma \in S^{\lambda^+}_{<\kappa}\), there is a club \(D_\gamma\) in \(\gamma\) such that, for all \(\beta \in D_\gamma\), \(f_\beta < f_\gamma\);
3. for all \(\alpha, \beta < \lambda^+\), there is \(\gamma < \lambda^+\) such that \(f^{C_\alpha}_\beta < f_\gamma\).
Move now to W, where we have $\langle x_i \mid i < \theta \rangle$. Define a sequence $\vec{g} = \langle g_\beta \mid \beta < \lambda^+ \rangle$ from θ to λ_0 by letting $g_\beta(i) = f_\beta(x_i)$. Note that:

1. \vec{g} is \ast-increasing;
2. for all $\gamma \in S_{\lambda^+} > \theta$, there is a club D_γ in γ such that, for all $\beta \in D_\gamma$, $g_\beta < g_\gamma$;
3. $\theta^+ < \lambda^+ + 3$.

Therefore, \vec{g} has an exact upper bound, i.e. a \ast-upper bound h such that, for every $h' < \ast h$, there is $\beta < \lambda^+ + 3$ such that $h' < \ast g_\beta$.

Moreover, we may assume $\text{cf}(h(i)) > \theta$ for all $i < \theta$, so $h : \theta \to \lambda_0$.
Proof sketch (cont.)

Move now to \(W \), where we have \(\langle x_i \mid i < \theta \rangle \). Define a sequence \(\vec{g} = \langle g_\beta \mid \beta < \lambda^+ \rangle \) from \(\theta \) to \(\lambda_0 \) by letting \(g_\beta(i) = f_\beta(x_i) \). Note that:

1. \(\vec{g} \) is \(<^* \)-increasing;
2. for all \(\gamma \in S^\lambda_{>\theta} \), there is a club \(D_\gamma \) in \(\gamma \) such that, for all \(\beta \in D_\gamma \), \(g_\beta < g_\gamma \);
3. \(\theta^+^3 < \lambda^+ \).

Therefore, \(\vec{g} \) has an exact upper bound, i.e. a \(<^* \)-upper bound \(h \) such that, for every \(h' <^* h \), there is \(\beta < \lambda^+ \) such that \(h' <^* g_\beta \).

Moreover, we may assume \(\text{cf}(h)(i) > \theta \) for all \(i < \theta \), so \(h : \theta \to \lambda_0 \).
Move now to W, where we have $\langle x_i \mid i < \theta \rangle$. Define a sequence $\vec{g} = \langle g_\beta \mid \beta < \lambda^+ \rangle$ from θ to λ_0 by letting $g_\beta(i) = f_\beta(x_i)$. Note that:

1. \vec{g} is $<^*$-increasing;
2. for all $\gamma \in S^{\lambda^+}_{>\theta}$, there is a club D_γ in γ such that, for all $\beta \in D_\gamma$, $g_\beta < g_\gamma$;
3. $\theta^{+3} < \lambda^+$.

Therefore, \vec{g} has an exact upper bound, i.e. a $<^*$-upper bound h such that, for every $h' <^* h$, there is $\beta < \lambda^+$ such that $h' <^* g_\beta$. Moreover, we may assume $\text{cf}(h)(i) > \theta$ for all $i < \theta$, so $h : \theta \to \lambda_0$. For $i < \theta$, let $\gamma_i = h(i)$. We claim that this works.
Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \not\in C_\alpha$.
Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \not\in C_\alpha$. Define $h' : \theta \to \lambda_0$ by

$$h'(i) = \begin{cases} 0 & \text{if } i \not\in A \\ \max(C_\alpha \cap \gamma_i) & \text{if } i \in A \end{cases}$$
Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \notin C_\alpha$. Define $h' : \theta \to \lambda_0$ by

$$h'(i) = \begin{cases} 0 & \text{if } i \notin A \\ \max(C_\alpha \cap \gamma_i) & \text{if } i \in A \end{cases}$$

$h' < h$, so there is $\beta < \lambda^+$ such that $h' < ^* g_\beta$.
Proof sketch (cont.)

If not, then there is \(\alpha < \lambda^+ \) and an unbounded \(A \subseteq \theta \) such that, for all \(i \in A \), \(\gamma_i \notin C_\alpha \). Define \(h' : \theta \to \lambda_0 \) by

\[
h'(i) = \begin{cases}
0 & \text{if } i \notin A \\
\max(C_\alpha \cap \gamma_i) & \text{if } i \in A
\end{cases}
\]

\(h' < h \), so there is \(\beta < \lambda^+ \) such that \(h' \prec^* g_\beta \). But then there is \(\gamma < \lambda^+ \) such that \(f_\beta^{C_\alpha} < f_\gamma \).
Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \notin C_\alpha$. Define $h' : \theta \to \lambda_0$ by

$$h'(i) = \begin{cases} 0 & \text{if } i \notin A \\ \max(C_\alpha \cap \gamma_i) & \text{if } i \in A \end{cases}$$

$h' < h$, so there is $\beta < \lambda^+$ such that $h' <^* g_\beta$. But then there is $\gamma < \lambda^+$ such that $f_\beta^{C_\alpha} < f_\gamma$. Now, for all sufficiently large $i \in A$, we have

$$\max(C_\alpha \cap h(i)) < g_\beta(i) < h(i) < \min(C_\alpha \setminus g_\beta(i)) < g_\gamma(i).$$
Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \notin C_\alpha$. Define $h' : \theta \to \lambda_0$ by

$$h'(i) = \begin{cases} 0 & \text{if } i \notin A \\ \max(C_\alpha \cap \gamma_i) & \text{if } i \in A \end{cases}$$

$h' < h$, so there is $\beta < \lambda^+$ such that $h' <^* g_\beta$. But then there is $\gamma < \lambda^+$ such that $f_{_\beta}^{C_\alpha} < f_\gamma$. Now, for all sufficiently large $i \in A$, we have

$$\max(C_\alpha \cap h(i)) < g_\beta(i) < h(i) < \min(C_\alpha \setminus g_\beta(i)) < g_\gamma(i).$$

In particular, h is not a $<^*$-upper bound for \vec{g}. Contradiction!
III: Diagonal sequences
Definition
Suppose that θ is a regular cardinal and $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals.
Diagonal clubs

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose that θ is a regular cardinal and $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals.</td>
</tr>
<tr>
<td>1. A diagonal club in $\vec{\mu}$ is a sequence $\langle C_i \mid i < \theta \rangle$ such that, for all $i < \theta$, C_i is club in μ_i.</td>
</tr>
</tbody>
</table>
Definition

Suppose that θ is a regular cardinal and $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals.

1. A *diagonal club in* $\vec{\mu}$ is a sequence $\langle C_i \mid i < \theta \rangle$ such that, for all $i < \theta$, C_i is club in μ_i.

2. If $\kappa \leq \mu_0$ is a regular cardinal, then a *diagonal club in* $\mathcal{P}_\kappa(\vec{\mu})$ is a sequence $\langle D_i \mid i < \theta \rangle$ such that, for all $i < \theta$, D_i is club in $\mathcal{P}_\kappa(\mu_i)$.
Diagonal ordinal sequences

Theorem

Suppose that:

1. \(V \) is an inner model of \(W \);
2. in \(V \), \(\mu \) is a singular cardinal of cofinality \(\theta \);
3. there is \(\kappa < \mu \) such that every \(V \)-regular cardinal in \([\kappa, \mu) \) has cofinality \(\theta \) in \(W \);
4. in \(W \), \((\mu^+) \) remains a cardinal and \(\theta^{+2} < |\mu| \).
Diagonal ordinal sequences

Theorem

Suppose that:

1. V is an inner model of W;
2. in V, μ is a singular cardinal of cofinality θ;
3. there is $\kappa < \mu$ such that every V-regular cardinal in $[\kappa, \mu)$ has cofinality θ in W;
4. in W, $(\mu^+)^V$ remains a cardinal and $\theta^{+2} < |\mu|$.

Then there are:

- an increasing sequence of regular cardinals $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle \in V$, cofinal in μ;
Diagonal ordinal sequences

Theorem

Suppose that:

1. V is an inner model of W;
2. in V, μ is a singular cardinal of cofinality θ;
3. there is $\kappa < \mu$ such that every V-regular cardinal in $[\kappa, \mu)$ has cofinality θ in W;
4. in W, $(\mu^+)^V$ remains a cardinal and $\theta^{+2} < |\mu|$.

Then there are:

- an increasing sequence of regular cardinals $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle \in V$, cofinal in μ;
- a function $g \in \prod_{i<\theta} \mu_i$ in W.
Theorem

Suppose that:

1. V is an inner model of W;
2. in V, μ is a singular cardinal of cofinality θ;
3. there is $\kappa < \mu$ such that every V-regular cardinal in $[\kappa, \mu)$ has cofinality θ in W;
4. in W, $(\mu^+)^V$ remains a cardinal and $\theta^+ < |\mu|$.

Then there are:

- an increasing sequence of regular cardinals $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle \in V$, cofinal in μ;
- a function $g \in \prod_{i<\theta} \mu_i$ in W

such that, for every $\langle C_i \mid i < \theta \rangle \in V$ that is a diagonal club in $\vec{\mu}$, for all sufficiently large $i < \theta$, $g(i) \in C_i$.
Generalized diagonal sequences

Theorem

Suppose that:

1. V is an inner model of W;
2. in V, $\text{cf}(\mu) = \theta < \kappa = \text{cf}(\kappa) < \mu$ are cardinals, with μ strong limit;
3. in V, $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals, cofinal in μ, with $\kappa \leq \mu_0$;
4. in W, there is a \subseteq-increasing sequence $\langle x_i \mid i < \theta \rangle$ from $(\mathcal{P}_\kappa(\mu))^V$ such that $\bigcup_{i<\theta} x_i = \mu$;
5. in W, $(\mu^+)^V$ remains a cardinal and $\mu \geq 2^\theta$;
6. in V, $\langle \vec{D}(\alpha) \mid \alpha < \mu^+ \rangle$ is a sequence of diagonal clubs in $\mathcal{P}_\kappa(\vec{\mu})$.
Generalized diagonal sequences

Theorem

Suppose that:

1. V is an inner model of W;
2. in V, $\text{cf}(\mu) = \theta < \kappa = \text{cf}(\kappa) < \mu$ are cardinals, with μ strong limit;
3. in V, $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals, cofinal in μ, with $\kappa \leq \mu_0$;
4. in W, there is a \subseteq-increasing sequence $\langle x_i \mid i < \theta \rangle$ from $(P_\kappa(\mu))^V$ such that $\bigcup_{i<\theta} x_i = \mu$;
5. in W, $(\mu^+)^V$ remains a cardinal and $\mu \geq 2^\theta$;
6. in V, $\langle \vec{D}(\alpha) \mid \alpha < \mu^+ \rangle$ is a sequence of diagonal clubs in $P_\kappa(\vec{\mu})$.

Then, in W, there is $\langle y_i \mid i < \theta \rangle$ such that, for all $\alpha < \mu^+$ and all sufficiently large $i < \theta$, $y_i \in D(\alpha)_i$.
References

Ari Meir Brodsky and Assaf Rinot, More notions of forcing add a Souslin tree, Preprint.

Photo credits

Martina Lindqvist

Neighbours

www.martinalindqvist.com
Thank you!