
Synthese (2008) 164:401–420
DOI 10.1007/s11229-008-9357-z

The Craig Interpolation Theorem in abstract model
theory

Jouko Väänänen

Received: 12 March 2008 / Accepted: 2 June 2008 / Published online: 1 July 2008
© The Author(s) 2008

Abstract The Craig Interpolation Theorem is intimately connected with the
emergence of abstract logic and continues to be the driving force of the field. I will
argue in this paper that the interpolation property is an important litmus test in abstract
model theory for identifying “natural,” robust extensions of first order logic. My argu-
ment is supported by the observation that logics which satisfy the interpolation property
usually also satisfy a Lindström type maximality theorem. Admittedly, the range of
such logics is small.
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1 Introduction

Abstract model theory studies general model theoretic properties of extensions of first
order logic obtained by adding generalized quantifiers, infinitary operations, or higher
order quantifiers. We will not define the concept of an abstract logic here, as the def-
inition is quite long and the intuitive concept suffices for this survey. The intuitive
concept is the following: In first order logic every sentence ϕ has an associated class
Kϕ of models, namely the class of models of ϕ. If we forget about the sentences ϕ we
can think of first order logic simply as a collection L of model classes K . First order
logic has thus become an abstract logic. More generally an abstract logic is a collec-
tion L of model classes K satisfying some natural axioms such as every model class
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K is closed under isomorphisms, the collection is closed under intersections K ∩ K ′
and complements −K , etc. This is similar to defining what it means for a subset of
the Euclidean space R

3 to be open, and then abstracting from this the concept of a
topology: any collection of sets, closed under finite intersections and arbitrary unions.
For a thorough definition of the concept of abstract logic, see Barwise and Feferman
(1985).

We use L, L′, etc. to denote abstract logics, and ϕ, ψ , θ , etc. to denote sentences of
abstract logics. Vocabularies are denoted by L , L ′, etc. The vocabulary of a sentence
ϕ is denoted τ(ϕ). Suppose L is a logic and L a vocabulary. A class K of L-structures
is an EC(L)-class if there is a sentence ϕ ∈ L with τ(ϕ) = L such that K is the
class of all models of ϕ. We then say alternatively that K is an L-definable class.
A class K of L-structures is a PC(L)-class if there is a vocabulary L ′ ⊇ L and a
class K ′ of L′-structures such that K ′ is L-definable and K = {M � L: M ∈ K ′}. A
class K of L-structures is an RPC(L)-class if there is a vocabulary L ′ ⊇ L , a unary
predicate P ∈ L ′ and a class K ′ of L′-structures such that K ′ is L-definable and
K = {M(PM ) � L: M ∈ K ′}.

What kind of abstract logics, i.e. model theoretically defined extensions of first
order logic, are there? We list in the Appendix concrete examples of abstract logics
that are discussed in this paper. By and large the known extensions fall into three
categories, see Fig. 1.

The first category is the class of higher order logics, most notably the second order
logic L2, which permits quantification over arbitrary relations of the universe. The sec-
ond category of extensions of first order logic are the countably compact extensions
of Lωω by generalized quantifiers, such as

Q1xϕ(x) ⇐⇒ |{a : ϕ(a)}| ≥ ℵ1

Qcof
ω xyϕ(x, y) ⇐⇒ cof ({(a, b) : ϕ(a, b))}) = ω

QM M
1 xyϕ(x, y) ⇐⇒ ∃X (|X | ≥ ℵ1 and ∀x, y ∈ Xϕ(x, y))

The countable compactness of Lωω(QM M
1 ) is independent of ZFC, so this logic is

not in the same category as Lωω(Q1) and Lωω(Q
cof
ω ), although it is, if we assume ♦.

Fig. 1 Abstract model theory
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The third category of logics is the class of infinitary logics. Let Lκλ denote the logic
in which conjunctions and disjunctions of length <κ are allowed, as well as homoge-
neous strings of quantifiers of length <λ. The most studied of these logics is Lω1ω and
its admissible fragments L A.

There is a special family of abstract logics which do not have any apparent syn-
tax, just the semantics. These are the so called �-extensions of abstract logics. The
�-extension of L is the smallest extension of L to a logic L′ such that SK(L′) (see
below) holds. Alternatively, �(L) can be defined as the abstract logic, the sentences
of which are exactly pairs (K , K ′) of RPC(L)-classes that are complements of each
other. The nice thing about �(L) is that it always satisfies the Souslin–Kleene inter-
polation property, it has the countable compactness property if L does, and it has the
Löwenheim property if L has. The downside is that in many important cases we do
not have a natural syntax for �(L). This is the case, for example, with �(L(Q1)).

Figure 2 displays the landscape of abstract logics. To the left ascends the “infinitary
trail” and to the right the “quantifier trail.” Both trails have positive occurrences of
(relative) interpolation, but also “deathtraps.” The trap in the infinitary trail is that at
some point well-ordering becomes definable and everything is lost as far as interpola-
tion is concerned (see below) in the sense that we have very strong counterexamples
to interpolation and even to its weakest variants. The trap on the quantifier trail is
that to find an extension with interpolation, of even the simplest logic L(Q1), one
has to go beyond logics that are absolute with respect to CCC extensions of the uni-
verse. Thus such logics cannot be based on any simple property of ℵ1 or ℵ2. Above
these trails hovers the realm of higher order logics, where model theory becomes set
theory.

I have put the extension Lωω(Q0) of Lωω with the quantifier

Q0xϕ(x) ⇐⇒ |{a : ϕ(a)}| ≥ ℵ0

on the infinitary trail, because it actually is very close to the smallest admissible
fragment L A in the sense that �(L(Q0)) = L A. In Fig. 2, I call the infinitary logics

Fig. 2 The landscape
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up to Lκω and the extension LκG of Lκω by the game quantifier

∀x0∃x1∀x2∃x3 . . .
∧

n<ω

ϕn(x0, . . . , x2n+1)

absolute, following (Barwise 1972) as their syntax and semantics are absolute with
respect to transitive models of set theory. By Theorem 1 first order logic is the only
logic in the intersection of the infinitary trail and the quantifier trail.

The extension L(H) of first order logic by the Henkin quantifier

H xyuvϕ(x, y, u, v) ⇐⇒ ∃ f ∃g∀x∀uϕ(x, f (x), u, g(u))

is essentially of the same strength as L2 in the sense that �(L(H)) = �(L2). The
infinite quantifier logics Lκκ , κ > ω are likewise essentially of second order nature,
even if they allow quantification over subsets of size <κ only.

The defining moment of abstract model theory was 1967 when Lindström (1969)
proved:

Theorem 1 (Lindström’s Theorem) First order logic Lωω is maximal with respect to
the Löwenheim property1 and the countable compactness property.2

There are many variations of this result and several closely related but different char-
acterizations of first order logic. For a complete account of them, see Flum (1985).
One of the main open questions of this field is whether the Löwenheim property can
be replaced by the Craig Interpolation Property:

Interpolation property: If ϕ and ψ are sentences of L such that ϕ |� ψ , then
there is an L-sentence θ such that ϕ |� θ , θ |� ψ and τ(θ) ⊆ τ(ϕ) ∩ τ(ψ).
This property is due to W. Craig (1957a). The relativized version Craig(L,L′)

stipulates that if such ϕ and ψ are taken from L, then such a θ can be found in L′.
Craig (1957b) showed that his interpolation theorem has an equivalent formulation as
a separation property:

Separation property: Any two disjoint PC(L)-classes can be separated by an
EC(L)-class.

Addison (1962, 2004) noted that the separation property is much like the separation
property of the projective hierarchy of descriptive set theory and the Kleene hierar-
chies in recursive function theory, and suggested an approach to definability theory
that would cover all three cases. Subsequently Vaught (1973) developed extensively
the theory of Lω1ω as an invariant version of descriptive set theory (see also Burgess
1977).

1 Every sentence with a model has a countable model.
2 Every countable set of sentences, every finite subset of which has a model, has itself a model. Logics
with this property are called countably compact.

123



Synthese (2008) 164:401–420 405

While the separation property is clearly equivalent to the interpolation property,
there are also strictly weaker versions. The Beth Definability Property, Beth(L), stip-
ulates that if a sentenceϕ ∈ L, with a predicate P in τ(ϕ), has at most one interpretation
for P in every model of ϕ, then there is a formula ψ ∈ L, with τ(ψ) ⊆ τ(ϕ) \ {P},
such that ψ defines P in every model of ϕ. As pointed out by Craig in his original
paper, Craig(L) implies Beth(L). The Weak Beth Definability Property, WBeth(L),
is the variant of Beth(L) obtained by replacing “at most one” in the definition of the
property by “exactly one.” Naturally Beth(L) implies WBeth(L). By WBeth(L,L′)
we mean the variant in which ϕ ∈ L andψ ∈ L′. Finally, the Souslin–Kleene Interpo-
lation Property, SK(L), is the special case of the separation property in which the two
disjoint PC(L)-classes are assumed to be complements of each other. Thus Craig(L)
implies SK(L), and it is not hard to see that SK(L) implies WBeth(L). We have the
“diamond of interpolation properties”-diagram of Fig. 3. None of the arrows can be
reversed.

There are essentially three proofs of the Craig Interpolation Theorem known today:
(1) Proof theoretic: based on Cut-Elimination and the Subformula Property. (2) Model
theoretic: based on large homogeneous models. (3) Game theoretic/set theoretic: based
on undefinability of well-order. It is arguable whether they are really fundamentally
different proofs. In any case, attempts have been made to extend all of these proofs
to extensions of first order logic. The model theoretic proof uses compactness in an
essential way and is appropriate candidate in the quantifier trail where logics are in
general countably compact. The game theoretic/set theoretic proof is appropriate in the
infinitary trail up to the points (Lω1ω1 and Lω1G) where well order becomes definable.

In the late 1960s both Mostowski (1968) and Lindström (1969) were contemplating
the question why some extensions of first order logic satisfy the Craig Interpolation
Theorem and others do not. They both came up with the general concept of what is
now called abstract logic and showed that certain abstract logics do not satisfy interpo-
lation. Mostowski gave a recursion theoretic criterion satisfied by weak second order
logic and L(Q0)which is sufficient for an abstract logic to fail to satisfy interpolation.

Fig. 3 The diamond of
interpolation properties
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Lindström looked for a proof of the Beth Definability Theorem for some extensions of
first order logic and came up with a new proof of the Robinson Consistency Property
which eventually was transformed into his famous Theorem 1.3 These early develop-
ments emphasize the close relationship between the Craig Interpolation Theorem and
the emergence of abstract model theory.

2 The quantifier trail

The quantifier trail of the landscape of Fig. 2 splits at first order logic into two parts:
one to the logic L(Q1), based on the concept of countable cardinality, and one to the
logic L(Qcof

ω ), based on the concept of countably cofinality. These two incomparable
logics center around the two most basic concepts of set theory. The more elaborate
concept of a stationary set has led to the logic L(aa), where the branches from L(Q1)

and L(Qcof
ω ) are again united.

It is an open problem whether there is any non-first order generalized quantifier Q
such that Lωω(Q) satisfies the interpolation theorem. The problem is that the most
likely candidates would be countably compact, but we do not know any examples of
countable compact logics with interpolation, whether of the form Lωω(Q) or not.

2.1 Deathtraps

Let us first discuss some problems among logics Lωω(Q) which are not countably
compact. The following fact was pointed out in Lindström (1969) and Mostowski
(1968): Logics of the form Lωω(Q) permit an implicit truth definition for themselves
on (ω,<) (“adequate to truth in themselves” in the terminology of Feferman 1975).
In some cases Lωω(Q) can characterize (ω,<), for example if Q is Q0, I or H .
Then an undefinability of truth argument shows that Lωω(Q)-truth is implicitly but
not explicitly definable on (ω,<). Thus in such a case Lωω(Q) fails to satisfy the
weak Beth property, and hence also the interpolation property. This simple but funda-
mental observation is not limited to logics of the form Lωω(Q). Craig (1965) used this
argument to refute interpolation in higher order logics. Gostanian and Hrbáček (1979)
used this argument to refute interpolation in infinitary logic and to get strong failures
of weak Beth for logics like Lωω(I ) and Lωω(H), even ¬WBeth(Lωω(Q), L∞∞(Q))
for Q ∈ {I, H}.

So if we want to find logics of the form Lωω(Q) with interpolation, it makes
sense to concentrate on those that are countably compact. For the logic L(Q1) a
counterexample to interpolation was found by Keisler. It is the following. Let us con-
sider a vocabulary with one binary relation symbol E . Let K1 be the PC(L(Q1)) class
of equivalence relations with an uncountable set of non-equivalent elements, and K2
the PC(L(Q1)) class of equivalence relations with a countable set that meets every
equivalence class. These model classes are disjoint but they cannot be separated in
L(Q1), indeed not in any extension of Lωω by unary generalized quantifiers. The proof

3 For the story how Lindström came to the proof of his characterization of first order logic, see Lindström
(1995).
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of this is an application of Ehrenfeucht–Fraïssé games for such logics (Caicedo 1983).
Similar or more elaborate constructions show that interpolation fails in L(Qcof

ω ), L(aa)
and L(QMM

1 ).
What about weaker form of interpolation for L(Q1), in the spirit of Fig. 3? Friedman

(1973) showed, by utilizing Ehrenfeuch–Fraïssé games for L(Q1), that L(Q1) and
many logics similar to it fail to satisfy the Beth property. Friedman asks what the
situation is with the weak Beth property. For the answer, see below.

The following simple observation shows that nothing very simple will turn L(Q1)

into a logic with interpolation:

Folklore fact: There is no abstract logic L, absolute in ZFC between transitive
models that preserve ℵ1, that provably in ZFC satisfies Sep(L(Q1),L). More
exactly, there are PC(L(Q1))-classes K1 and K2, which are provably in ZFC
disjoint, such that there is no term for an L-sentence ϕ such that truth of ϕ is
provably in ZFC preserved by CCC extensions, and ϕ separates K1 and K2
provably in ZFC.

Proof Let K1 be the PC(L(Q1)) class of tree-like (the set of predecessors of every
element is linearly ordered) partial orders in which there is an uncountable branch, and
K2 the PC(L(Q1)) class of tree-like partial orders in which there is mapping f to a
countable set such that the pre-image of every point is an antichain. These classes are
PC(L(Q1))-classes and disjoint, provably in ZFC. Since we assume Sep(L(Q1),L),
there is a sentence ϕ of L such that, provably in ZFC, K1 is included in the class of
models of ϕ, and no model of ϕ is in K2 (or K1 and K2 interchanged). Let us move to
a forcing extension in which there is a Souslin tree T . Then T is neither in K1 nor in
K2. Case 1: T satisfies, as a partial order, the sentence ϕ. Let us consider the generic
extension V [G] in which T has been specialized with CCC forcing. In the extension,
T ∈ K2 and T |� ϕ, a contradiction. Case 2: T satisfies as a partial order the sentence
¬ϕ. Let us consider the generic extension V [G] in which a branch has been forced
into T with CCC forcing. In the extension, T ∈ K1 and T |� ϕ, a contradiction.

2.2 Positive results

In the direction of generalized quantifiers the Gentzen approach has not been system-
atically studied and there may be some inherent reason for this. However, Alechina
and van Lambalgen (1996) give a Gentzen system for L(Q1). Their system has cut-
elimination, but does not yield interpolation (of course, we know interpolation does
not hold for L(Q1)), because the cut-elimination does not give the needed subterm
property. The stationary logic L(aa) is another case where proof theory has been tried.
After initial attempts to prove the Cut Elimination Theorem for the most obvious Gent-
zen system for L(aa) failed, Szabo (1987) added new rules and proved the theorem.
However, his system has an asymmetry which again prevents any conclusion in the
direction of interpolation. This is a pity, for there is an interpolation property that
L(aa) has and that could perhaps have a Gentzen style proof, namely Shelah’s (1985)
relative interpolation theorem:

123



408 Synthese (2008) 164:401–420

Craig(L(Qcof
ω ), L(aa)). (1)

2.2.1 The Robinson property

In the model theoretic proof of interpolation for Lωω one approach is to use the stronger
version of interpolation, namely:

Robinson property: If T and T ′ are two complete L-theories such that all models
of T ∩ T ′ are L-equivalent in the common vocabulary, then T ∪ T ′ has a model.

The Robinson property can be proved for Lωω by means of an alternating chain
argument. However, there are even simpler proofs using large models. Suppose A is
a saturated4 model of T and B a saturated model of T ′ of the same cardinality as
A. Let L0 be the common vocabulary of T and T ′. Then A � L0 and B � L0 are
elementarily equivalent saturated models of the same cardinality, hence isomorphic.
This isomorphism can be used to expand B in a trivial way to a model of T ∪ T ′.
Essentially this proof, but with ultraproducts, was given by Keisler (1961).

The Robinson property implies the interpolation property for any logic: Suppose
ϕ |� ψ . Let T be a complete extension of the theory consisting of {¬ψ} and all logical
consequences of ϕ in the common vocabulary L0. Let T ′ be a complete extension of
the theory consisting of {ϕ} and all elements of T in the common vocabulary L0. By
the Robinson property, the theory T ∪ T ′ is consistent, but this contradicts |� ϕ → ψ .
On the other hand, the interpolation property and compactness together give the
Robinson property: Suppose T ∪ T ′ has no models. Then by compactness, there
is a finite conjunction ϕ of sentences of T and a finite conjunction ψ of sentences of
T ′ such that |� ϕ → ¬ψ . Suppose θ is an interpolant. Let A |� T and B |� T ′. Then
A � L0 ≡ B � L0, where L0 is the common vocabulary. However, now A |� θ , while
B |� ¬θ , a contradiction. In fact, the Robinson property also implies compactness
(Makowsky and Shelah 1983), so Robinson property is equivalent to the combination
of compactness and interpolation.

In the quantifier trail the most promising result about interpolation is Shelah’s (1)
above. It raises the intriguing question whether there is some logic L in between
L(Qcof

ω ) and L(aa) with interpolation. No such L is at the moment in sight. The proof
of the fact (1) is a vast elaboration of the above proof of the Robinson property.

2.2.2 The back-and-forth method

The following game is due to Ehrenfeucht (1960): Let L be a finite relational vocab-
ulary and M,M′ L-structures such that M ∩ M′ = ∅. We use E Fn(A,B) to denote
the n-move Ehrenfeucht-Fraïssé game on A and B. During each round of the game

4 The use of saturated models is problematic because without GCH or inaccessible cardinals we do not
know the existence of such. To go around this one can use so-called special models or so called recursively
saturated models.
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player I first picks an element from one of the models, and then player II picks an
element from the other model. In this way a relation

p = {(a1, b1), . . . , (an, bn)} ⊆ M × M ′ (2)

is built. If p is a partial isomorphism between M and M′, player II is the winner of
this play. Player II has a winning strategy in this game if and only if the models M
and M′ satisfy the same first order sentences of quantifier rank at most n. If player II
has a winning strategy τ in E Fn(A,B), the set Ii of positions

{(a1, b1), . . . , (a j , b j )} ⊆ M × M ′ (3)

which can be continued to a position

{(a1, b1), . . . , (an−i , bn−i )} ⊆ M × M ′ (4)

in which player II has used τ , form an increasing chain In ⊆ In−1 ⊆ ... ⊆ I0 known
as a back-and-forth sequence and introduced by Fraïssé (1956). The name derives
from the fact that if p ∈ Ii+1 and a ∈ M (or b ∈ M ′), then there is b ∈ M ′ (respec-
tively, a ∈ M) such that p ∪ {(a, b)} ∈ Ii . Conversely, if a back-and-forth sequence
In ⊆ In−1 ⊆ ... ⊆ I0 exists, then player II can use it to win the game E Fn(A,B). So
back-and-forth sequences and winning strategies of II go hand in hand. This explains
why the game is generally called the Ehrenfeucht–Fraïssé game.

We can think of the game E Fn(A,B) as a restricted case of the simpler game
E F(A,B) which lasts for ω moves. The restriction imposed in E Fn(A,B) is that
the game is suddenly stopped after n moves. This is as if there was a clock that ticks
down, starting from n, and going through elements of n in reverse order in ≤ n steps.
Such a clock can be thought of as a linear order of length n. We say that the clock
ranks the game.

The following proof of the Robinson property for Lωω, using the back-and-forth
method just described, is due to Lindström. This is the argument that became the
proof of Theorem 1 in Lindström (1969). Let L1 be the vocabulary of T and L2 that
of T ′. By assumption, there is a model M1 of T and a model M2 of T ′ such that
M1 � L ≡ M2 � L , where L is the common vocabulary. Thus there is, for any n ∈ N,
a back-and-forth sequence (Ii : i ≤ n) for M1 � L and M2 � L . Let L ′

2 be a copy of L2
such that L2 ∩ L ′

2 = ∅. Let L ′ be the vocabulary resulting from L in this translation.
Let M′

2 be the translation of M2 to the vocabulary L ′
2. Let S be the set of first order

sentences which state

1. The complete L1-theory of M1,
2. The complete L ′

2-theory of M′
2

3. (R,<) (the “clock”) is a non-empty linear order in which every element with a
predecessor has an immediate predecessor.

4. First order sentences which state, by means of new predicates, that there is as
a back-and-forth sequence for the L-part of the universe and the L ′-part of the
universe, ranked by the clock (R,<).
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For all n ∈ N there is a model of S with (R,<) of length n. By the Compactness
Theorem, there is a model N of S with (R,<) non-well-founded. By the Löwenheim
Property we may assume N is countable. Let N1 = N � L1 and N′

2 = N � L ′
2. Since

the clock of N is non-well-founded, player II has a winning strategy for the infinite
game E F(N1,N2), where N2 is the translation of N′

2 to L2. Since N1 and N2 are
countable, N1 ∼= N2. This implies that N1 can be expanded to a model of T ∪ T ′.

Lindström observed that the above argument works for any logic which has the
countable compactness property and the Löwenheim property. But are there such
extensions of Lωω? To see why there are not, let us write M ∼n M′ if player II has
a winning strategy in E Fn(A,B). This equivalence relation divides the class of all
models with vocabulary L into a finite number of equivalence classes, each definable
by a first order sentence of quantifier rank at most n. Thus:

A class of models of a finite relational vocabulary L is first order definable if
and only if it is closed under ∼n for some n ∈ N. (Fraïssé 1956)

Now we can return to Lindström’s proof. Let us use the same argument as above to
derive the separation property instead of the stronger Robinson property. Suppose K1
and K2 are disjoint PC-classes of models. We show that there is an EC-class K that
separates K1 and K2, i.e. K1 ⊆ K and K2 ∩ K = ∅. Case 1: There is an n ∈ N such
that some union K of ∼n-equivalence classes of models separates K1 and K2. By the
above remark, the model class K is first order definable, so the claim is proved. Case
2: There are, for any n ∈ N, L-models Mn and Nn such that Mn ∼n Nn . Suppose
K1 is the class of reducts of models of ϕ, and K2 respectively the class of reducts of
models of ψ . Let T be the set of first order sentences which state

1. ϕ(P1).
2. ψ(P2).
3. (R,<) (the “clock”) is a non-empty linear order in which every element with a

predecessor has an immediate predecessor.
4. First order sentences which state, by means of new predicates, that there is as a

back-and-forth sequence for the P1-part of the universe and the P2-part of the
universe, ranked by the clock (R,<).

For all n ∈ N there is a model An of T , built from Mn and Nn , with (R,<) of
length n. By the Compactness Theorem, there is a countable model A of T with (R,<)
non-well-founded. Let B1 be the L1 ∩ L2-structure (A � (L1 ∩ L2))

(PA
1 ). Let B2 be

the L1 ∩ L2-structure (A � (L1 ∩ L2))
(PA

2 ). Now B1 �p B2. Since B1 and B2 are
countable, they are isomorphic. But B1 ∈ K1 and B2 ∈ K2, a contradiction.

So we have derived the separation property and the proof clearly works for any logic
which satisfies countable compactness and the Löwenheim property. But the conclu-
sion still is that the disjoint PC(L)-classes can be separated by an EC(Lωω)-class. But
then since we assume our logics are closed under negation, every EC(L)-class must
be an EC(Lωω)-class. This is how Lindström came to prove his Theorem 1. While the
theorem itself is famous, it is perhaps less known that the proof, as presented above,
gives an alternative proof of the interpolation theorem in first order logic.
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2.2.3 The diamond of weaker forms of interpolation

Let us now return to the question whether L(Q1) or other countably compact logics
may satisfy a weaker form of interpolation. A result of Shelah (1985) says that there is
a compact extension of first order logic with Beth. The logic is the smallest extension
of a close relative of L(Qcof

ω ) to a logic with the Beth property. The proof extends the
proof of the compactness of the base logic, step by step, to the whole Beth exten-
sion. There is also a compact logic with the Souslin–Kleene interpolation property,
namely �(L(Qcof

ω )). Here all we need to know is that L(Qcof
ω ) is compact as � always

preserves compactness. Surprisingly, considering the difficulty in finding any positive
results about interpolation among generalized quantifier logics, Mekler and Shelah
(1985) showed that it is consistent, relative to the consistency of ZFC, that L(Q1)

satisfies the weak Beth property. It is still not known whether this is in fact provable in
ZFC. The proof of Mekler and Shelah is based on the idea that we kill by forcing all
implicit definitions which do not have an explicit definition. Although this may sound
ad hoc, the proof actually gives a useful criterion, presented in Shelah (1985), for a
countably compact logic to satisfy the weak Beth property. The full extent of this idea
has not been exhausted yet.

3 The infinitary trail

The infinitary trail extends from first order logic, through the “pseudo” infinitary logic
L(Q0) to two main branches, the lower branch of classical infinitary languages Lκω,
and further on Lκκ , and the upper branch of variants with the game quantifier (or just
the well-ordering quantifier QWO). These two main branches are radically different
from the point of view of interpolation. On the lower branch we get results up to the
point where well-ordering becomes definable, while on the upper branch well-ordering
is definable right in the beginning, and negative results start pouring in.

3.1 Negative results

A sentence ϕ of a logic L is said to pin down the ordinal α if τ(ϕ) has a binary predi-
cate< such that in every model A of ϕ we have<A well-ordered, and additionally, in
some model A of ϕ we have <A well-ordered in type ≥ α. First order logic and any
countably compact logic can pin down finite ordinals only. The logic Lκω pins down
κ+ if κ is regular (Barwise and Kunen 1971), and even 2κ if κ is a singular strong
limit (Shelah 1990). The question how large ordinals a logic pins down is a vitally
important characteristic of the logic related, e.g. to the interpolation property, models
with indiscernibles, and Hanf numbers. For interpolation the relevant relationship was
established by Gostanian and Hrbáček (1979): If Lκ+ω pins down a regular λ, then
Craig(Lκ+ω, Lλλ) fails. Combined with (5) below, this shows that no sentence of L∞ω

pins down every ordinal.
The proof of Malitz (1971) that L∞ω does not have the interpolation property can

be used to show: If L ≤ L′, L has a consistent sentence ϕ with only countable models
and a consistent sentence ψ with only uncountable models, and Craig(L,L′) holds,
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then L′ cannot have the Karp property.5 The reason is simple: We may assume that the
vocabularies of ϕ and ψ are disjoint. So |� ϕ → ¬ψ . However, all infinite models of
the empty vocabulary are partially isomorphic. So no sentence of the empty vocabulary
in a logic with the Karp property can separate ϕ and ¬ψ . Barwise formulated this as
follows: If an abstract logic has the many-sorted interpolation property, then it has the
Karp property if and only if it has the Löwenheim property. As a consequence, no logic
between Lω2ω and L∞G can have the (many-sorted) interpolation property, as they
all have the Karp property. Moreover, no absolute logic L can satisfy Craig(Lω2ω,L),
again for the same reason.

One can also discern a purely mathematical impediment for the interpolation prop-
erty in logics based on uncountable structres, such as Lω2ω and its extensions: Let us
consider ωω1

1 as a generalized Baire space with the so called box topology. The family
of Borel sets is the smallest set containing open sets and closed under complements
and unions of length ω1. We can consider classes of models of size ℵ1 as subsets in
this space. Assume CH. Then there are disjoint 
1

1 sets which cannot be separated by
a Borel set. Assume, on the other hand, not-CH+MA. Then any two disjoint
1

1 sets of
expansions of (ω1,<) can be separated by a Borel set (Shelah and Väänänen 2000).

3.2 Positive results

The proof theoretic argument for the interpolation property of Lωω, proceeding via
the Cut Elimination Theorem of a suitable Gentzen system, works also in Lω1ω, as
was demonstrated by Lopez-Escobar (1965). It works also in the countable admissible
fragments of Lω1ω, as demonstrated by Barwise (1969). The best result in this direction
in the classical higher infinitary logics is the following result of Malitz (1971):

Craig(Lκω, Lλκ), where λ = (2<κ)+ and κ is regular. (5)

The proof of interpolation by means of the Robinson property has the obvious stum-
bling block that infinitary logics are not countably compact. However, the Lindström
variant works to some extent as was shown by Barwise (1974). A little surprisingly,
we do not get a proof of interpolation but merely a model theoretic characterization
of the infinitary logic Lκ+ω: Suppose κ = �κ . Then Lκω is the maximal extension of
Lωω which has the Karp property and that pins down only ordinals <κ . The proof is
an adaption of the proof of Lindström’s Theorem.

3.3 Consistency properties

Henkin (1963) gave a proof of interpolation for Lωω which is based on a semantic
concept of proof. The idea of Henkin’s proof is the following: Let T1 be a theory in the
vocabulary L1, and T2 a theory in the vocabulary L2. Let us say that a sentence θ in the
vocabulary L = L1 ∩ L2 separates the theories T1 and T2, making them separable, if
T1 |� θ and T2 |� ¬θ . Starting from the assumption that the theories {ϕ} and {¬ψ} are

5 Any two partially isomorphic structures are elementarily equivalent
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inseparable, Henkin builds step by step a theory S such that {ϕ,¬ψ} ⊆ S. Two special
parts of S, consisting solely of sentences of the vocabulary L1, and respectively L2,
are kept inseparable in the process, and in addition S satisfies conditions familiar from
his proof of Gödel’s Completeness Theorem. The latter conditions guarantee that we
can build a “Henkin”-model for S. But this contradicts the assumption that |� ϕ → ψ .
So the original assumption that {ϕ} and {¬ψ} are inseparable must be abandoned.

Henkin’s proof was elaborated and applied to Lω1ω in Makkai (1969). He intro-
duced the method of consistency properties to infinitary logic and used it to prove
interpolation and preservation results. By elaborating further, a proof of (5) can be
given by means of consistency properties.

3.4 Approximation of game expressions

Svenonius (1965) gave a game theoretic proof of interpolation for Lωω anticipating
the emergence of the Covering Theorem of descriptive set theory in infinitary logic.
Svenonius associates with a given PC(Lωω) class K a game sentence �:

∀x0∃x1(ϕ0(x0, x1) ∧ ∀x2∃x3(ϕ1(x0, x1, x2, x3) ∧ ...)) (6)

which is true in every model in K . Conversely, every countable model of � is in K .
The intuition is the following. Suppose, for simplicity, that the PC(Lωω) definition
of K is

∃ f ∀x0∃x1ϕ(x0, x1, f (x0), f (x1)), (7)

where ϕ(x0, x1, y0, y1) is quantifier free. The formula (6) would in this case be

∀x0∀x1∃y0∃y1(ϕ(x0, x1, y0, y1)∧
∀x2∀x3∃y2∃y3(ϕ(x2, x3, y2, y3)∧

(x0 = x2 → y0 = y2) ∧ (x1 = x3 → y1 = y3)∧
. . .))

(8)

To prove the equivalence, suppose first

(A, f ) |� ∀x0∃x1ϕ(x0, x1, f (x0), f (x1)). (9)

The winning strategy of the player who makes the choices for each ∃yi in (8) is to
always play yi = f (xi ). On the other hand, if A = {a0, a1, . . .} and (8) holds in A,
then the responses yi = bi to the assignment xi = ai can be used to define a function
f (ai ) = bi such that (9) holds. The next step in the proof by Svenonius is to form the
following approximations6 of (8):

6 Such approximations were also considered by Keisler (1965).
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�0 ∀x0∀x1∃y0∃y1ϕ(x0, x1, y0, y1)

�1 ∀x0∀x1∃y0∃y1(ϕ(x0, x1, y0, y1) ∧ ∀x2∀x3∃y2∃y3(ϕ(x2, x3, y2, y3)∧
(x0 = x2 → y0 = y2) ∧ (x1 = x3 → y1 = y3)))

�2 etc.

Clearly, (8) implies each of its approximations �n . Conversely, it is easy to see that
if a saturated7 model satisfies each �n , it satisfies the whole (8). The proof of the
interpolation property for Lωω proceeds now as follows: Suppose K and K ′ are two
disjoint PC(Lωω) classes. Let � and � be the corresponding game formulas. If the
theory

{�n : n < ω} ∪ {�n : n < ω} (10)

is consistent, it has a saturated model A. But then A is in K ∩ K ′ which we assumed to
be empty. So the theory (10) is inconsistent and some�n separates the model classes.
A nice feature of this proof is that the syntax of the interpolant has a close resemblance
to the syntax of the starting sentences ϕ and ψ . In fact, the Svenonius approach has
been used in a variety of ways in definability theory and the theory of preservation
theorems. What is even more interesting, at least from the point of view of abstract
model theory, is that the Svenonius approach lends itself directly to infinitary logic. In
infinitary logic we cannot use saturated models, because we do not have compactness,
but the appeal to saturated models is actually an overkill. The same argument can
be realized in a more delicate way by means of information about upper bounds for
“pinning down” ordinals. Makkai has a good survey of this approach in Barwise et al.
(1977).

Let us now see how the method of approximations of game expressions works in
some detail in infinitary logic. Vaught (1973) associates a given PC(Lω1ω) class K of
vocabulary L with the game formula:

∀x0
∨

a0∈ω
∧

a1∈ω ∃x1 (ϕ
0
(a0,a1)

(x0, x1)∧
∀x2

∨
a2∈ω

∧
a3∈ω ∃x3 (ϕ

1
(a0,a1,a2,a3)

(x0, x1, x2, x3)∧
...

∀x2n
∨

a2n∈ω
∧

a2n+1∈ω ∃x2n+1 (ϕ
n
(a0,...,a2n+1)

(x0, ..., x2n+1)∧
... )...)),

(11)

where ϕ(a0...a2n+1)(x0, ..., x2n+1) is a conjunction of atomic and negated atomic for-
mulas in vocabulary L in the variables x0, ..., x2n+1. The sentence (11) is designed so
that if A ∈ K , then the player playing ∃ and

∨
in (11) has an easy winning strategy.

7 A countable recursively saturated model is enough.
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On the other hand, if a countable model B satisfies (11), then B ∈ K , essentially
because partially isomorphic countable models are isomorphic.

Let us consider the following approximations of (11):

�0
(a0,...,a2n−1)

(x0, ..., x2n−1)

is the conjunction of �m
(a0,...,a2m+1)

(x0, ..., x2m+1) for m

�α+1
(a0,...,a2n−1)

(x0, ..., x2n−1)

is

∀x2n

∨

a2n∈ω

∧

a2n+1∈ω
∃x2n+1�

α
(a0,...,a2n+1)

(x0, ..., x2n+1),

and for limit ν

�ν(a0,...,a2n−1)
(x0, ..., x2n−1) =

∧

α<ν

�α(a0,...,a2n−1)
(x0, ..., x2n−1).

Note that unlike (11), the formulas�α+1
(a0,...,a2n−1)

(x0, ..., x2n−1) are all in L∞ω. We
write �α for �α(). Clearly, if player II has a winning strategy in (11) in a model B,
then B |� �α for all α. On the other hand, a simple cardinality argument shows that
if a model of size κ satisfies �α for all α < κ , then the model satisfies (11).

Thus if we have two disjoint PC(Lω1ω) classes K1 and K2, we can associate with
them two conjunctive game expressions �1 and �2 such that �1 and �2 have no
countable models in common. Let �α1 and �α2 be the approximations of �1 and �2,
respectively. There must be an α < ω1 such that �α1 and �α2 have no models in
common, for otherwise we can pin down every countable ordinal, a contradiction with
Lindström (1966b) and Lopez-Escobar (1966). Now�α1 is the desired interpolant. The
argument used is called the Covering Theorem because the approximations “cover”
the game formula.

Makkai (1971) gives a unified treatment of preservation theorems in a generalized
framework using approximations of game expressions. Harnik and Makkai (1976)
further give applications of the Covering Theorem to model theory using Vaught for-
mulas. Makkai (1974) generalized the covering theorem approach to Lκω, κ of strong
cofinality ω.

3.5 Between Lκω and Lκκ for κ > ω1

Recall the relative interpolation theorem (5) of Malitz. For strongly inaccessible κ
this yields Craig(Lκω, Lκκ ).Of course neither Craig(Lκω, Lκω), nor Craig(Lκκ , Lκκ)
hold. But is there an intermediate logic L between Lκω and Lκκ for strongly inaccessi-
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ble κ? Indeed, such L exists, as demonstrated in Shelah and Väänänen (to appear). To
simplify notation, let us redefine Lκω as

⋃
λ<κ Lλω and Lκκ as

⋃
λ<κ Lλλ in the case

that κ is a limit cardinal. For regular limits this agrees with the old notation for Lκω
and Lκκ , but for singular cardinals the new notation seems canonical. Let κ = �κ .
The new infinitary logic L+

κ introduced in Shelah and Väänänen (to appear) satisfies
Lκω ≤ L+

κ , L+
κ ≤ Lκκ and Craig(L+

κ ). Moreover, L+
κ has a Lindström style model

theoretic characterization in terms of a strong form of undefinability of well-order.
The main ingredient of L+

κ is a new variant of the Ehrenfeucht–Fraïssé game for Lκκ .
In the new variant player II gives only partial answers to moves of player I. If the
game lasted for ω moves, the partial answers of II would constitute full answers. But
the game has a well-founded clock, so II never ends up fully completing her answers.
Although L+

κ cannot express well-ordering, it can express the property of a linear
order of not having uncountable descending chains.

3.6 Going beyond Lκκ

There are, as we have seen above, strong negative results about interpolation for
logics extending Lω1ω1 , indeed for just any logic, like Lω1G , capable of expressing
well-ordering. Even L∞∞ is not enough. However, the Henkin proof of interpola-
tion for first order logic, generalized to Lω1ω by Makkai, can be adapted, as shown
by Hyttinen (1990) and Tuuri (1992), to give proofs of separation theorems in large
infinitary logics. The central concept is the concept of a transfinite Model Existence
Game and the concept of a transfinite Ehrenfeucht–Fraïssé game.

So what needs to be added to L∞∞ in order that interpolation starts
to work? One important ingredient of the proof according to Henkin and Svenonius
was that countable partially isomorphic structures are isomorphic. When we proceed
to higher infinitary logics we have to handle uncountable structures. As observed
by Tait and Morley already in the sixties, uncountable L∞κ -equivalent models of
cardinality κ > ω need not be isomorphic. The situation changes if the Ehrenfeucht–
Fraïssé game of L∞κ is continued for κ moves. This solves the problem observed
by Tait and Morley. However, a new problem emerges: this new game need not be
determined (Mekler et al. 1993). However, let us overlook this problem for a mo-
ment and work towards a proof of the separation property, where negation is not
needed.

We assume κ = κ<κ below. It is possible to extend both the proof according to
Henkin, based on consistency properties, and the proof according to Svenonius and
Vaught, based on approximations of game formulas, to uncountable models by sys-
tematically employing games longer than ω. When approximations of such games are
built, we need to use clocks that are non-well-founded. A natural choice is to use trees
as clocks. Time passes step by step up the branches of the tree until the branch ends. A
well-founded clock corresponds to a tree with no infinite branches. When such trees
are used to measure the length of a game, and approximations of the relevant game
formulas are formed, the approximations are not necessarily formulas of L∞∞. This
is where Mκ+κ steps into the picture. The formulas of Mκ+κ are locally like formulas
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of Lκ+κ but descending subformula sequences can be transfinite.8 With this extension
of Lκ+κ we get Sep(Mκ+κ) (Hyttinen 1990, Tuuri 1992).

A result of the non-determinedness of some relevant transfinite games is that Mκ+κ
is not closed under negation. If one takes the fragment of Mκ+κ consisting of sen-
tences with negation in Mκ+κ , the so called determined part of Mκ+κ , the resulting
logic is exactly �(Lκ+κ). It is consistent, relative to the consistency of ZFC, that
Craig(Lκ+κ ,�(Lκ+κ)) fails. So we have found the separation property among the
higher infinitary logics, but at the cost of losing full negation and having had to assume
κ = κ<κ . By means of large cardinals and definability assumptions it may be possible
to go around the problem of negation. How to go around the assumption κ = κ<κ is
not clear but suitable forcing axioms (like PFA) may play a role.

Just as undefinability of well-order turned out to be a crucial element in the proof of
interpolation for the logic Lω1ω, the undefinability of κ-well-order (linear order with
no descending chains of length κ , Oikkonen 1997) turns out to be the deciding factor
for Sep(Mκ+κ).

No maximality results are known for the infinitely deep languages Mκ+κ , although
such probably can be proved with appropriate set theoretical assumptions.

4 The higher order realm

When we come to second order logic it becomes vitally important to make a clear
difference between the single-sorted interpolation property and the many-sorted one.
In the language of separation properties the corresponding distinction is between PC
classes and RPC classes. Second order logic satisfies the single-sorted interpolation
property for the trivial reason that L2 = PC(L2). With a little bit more work one can
show that also the Lyndon Theorem holds for L2. As to the many-sorted interpolation,
Craig proved in Craig (1965) with an undefinability of truth argument that L2 fails to
satisfy it. This proof became a paradigmatic example of the failure of interpolation and
its weaker forms in logics with enough expressive power to characterize their syntax
set (for a survey of such results, see Väänänen 1985). In the strange world of higher
order logics single-sorted interpolation holds in the strongest possible sense, and the
many-sorted interpolation fails in a most manifest way. In the case of all other logics it
seems that the single-sorted/many-sorted distinction makes no difference: either both
hold for the same reason or both fail for the same reason.

Our claim was that the Craig Interpolation Theorem is connected to maximal-
ity results for logic. The maximality characterization of L2, arising from the fact
L2 = PC(L2) that lies behind the interpolation property of L2, is the following: L2

is the maximal extension of Lωω in which every definable model class has a flat
definition in set theory (Väänänen 1979).

Acknowledgements Research partially supported by grant 40734 of the Academy of Finland.

8 The relevance of such logics was suggested already in Hintikka and Rantala (1976).
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Appendix

Symbol Name References Craig

Lωω First order logic
√

L(Q0) The quantifier “there exists infinitely many” Mostowski (1957)

Lω1ω Infinitary logic with countable

conjunctions and disjunction Tarski (1958), Keisler (1971)
√

LHYP The smallest admissible fragment Barwise (1969, 1975)
√

L A The admissible fragment Barwise (1969, 1975)
√

L(Qwo) The well ordering quantifier Lindström (1966a)

Lω1G The game quantifier Henkin (1959), Keisler (1965)

Lκω Infinitary logic with uncountable

conjunctions and disjunctions Karp (1964)

LκG Infinitary logic with the game quantifier Vaught (1973)

L+
κ A new infinitary logic

√
Lκκ Infinite quantifier logic Dickmann (1975)

Mκ+κ Infinitely deep logic Hyttinen (1990), Tuuri (1992)
√ ∗

L(Q1) The quantifier “there exists

uncountably many” Mostowski (1957), Keisler (1970)

L(I ) The Härtig quantifier Härtig (1962), Herre et al. (1991)

L(aa) The stationary logic Shelah (1975), Barwise et al. (1978)

L(H) The Henkin quantifier Henkin (1959)

L(Qcof
ω ) The cofinality quantifier Shelah (1975)

L(QMM
1 ) The Magidor-Malitz quantifier Magidor and Malitz (1977)

L2 Second order logic
√ ∗∗

∗ Separation, ∗∗ Single-sorted
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Gostanian, R., & Hrbáček, K. (1976). On the failure of the weak Beth property. Proceedings of the American

Mathematical Society, 58, 245–249.
Harnik, V., & Makkai, M. (1976). Applications of Vaught sentences and the covering theorem. Journal of

Symbolic Logic, 41(1), 171–187.
Härtig, K. (1962). Über einen Quantifikator mit zwei Wirkungsbereichen. In Colloq. Found. Math., Math.

Machines and Appl. (Tihany, 1962) (pp. 31–36). Budapest: Akad. Kiadó, 1965.
Henkin, L. (1959). Some remarks on infinitely long formulas. In Infinitistic Methods (Proc. Sympos. Foun-

dations of Math., Warsaw) (pp. 167–183). Oxford: Pergamon, 1961.
Henkin, L. (1963). An extension of the Craig-Lyndon interpolation theorem. Journal of Symbolic Logic,

28, 201–216.
Herre, H., Krynicki, M., Pinus, A., & Väänänen, J. (1991). The Härtig quantifier: A survey. Journal of

Symbolic Logic, 56(4), 1153–1183.
Hintikka, J., & Rantala, V. (1976). A new approach to infinitary languages. Annals of Mathematical Logic,

10(1), 95–115.
Hyttinen, T. (1990). Model theory for infinite quantifier languages. Fundamenta Mathematicae, 134(2),

125–142.
Karp, C. R. (1964). Languages with expressions of infinite length. Amsterdam: North-Holland Publish-

ing Co.
Keisler, H. J. (1961). Ultraproducts and elementary classes. Nederl. Akad. Wetensch. Proc. Ser. A 64=Indag.

Math., 23, 477–495.
Keisler, H. J. (1965). Finite approximations of infinitely long formulas. In Theory of models (Proceedings

of 1963 International Symposium, Berkeley) (pp. 158–169). Amsterdam: North-Holland.
Keisler, H. J. (1970). Logic with the quantifier “there exist uncountably many”. Annals of Mathematical

Logic, 1, 1–93.
Keisler, H. J. (1971). Model theory for infinitary logic. Logic with countable conjunctions and finite quan-

tifiers. Studies in logic and the foundations of mathematics (Vol. 62). Amsterdam: North-Holland
Publishing Co.

Lindström, P. (1966a) First order predicate logic with generalized quantifiers. Theoria, 32, 186–195.
Lindström, P. (1966b). On characterizability in Lω1ω0. Theoria, 32, 165–171.
Lindström, P. (1969). On extensions of elementary logic. Theoria, 35, 1–11.

123



420 Synthese (2008) 164:401–420

Lindström, P. (1995). Prologue. In M. Krynicki, M. Mostowski, & L. W. Szczerba (Eds.), Quantifiers:
Logics, models and computation: Surveys v. 1 (pp. 21–24). Dordrecht: Kluwer Academic Publishers.

Lopez-Escobar, E. G. K. (1965). An interpolation theorem for denumerably long formulas. Fundamenta
Mathematicae, 57, 253–272.

Lopez-Escobar, E. G. K. (1966). On defining well-orderings. Fundamenta Mathematicae, 59, 13–21.
Magidor, M., & Malitz, J. (1977). Compact extensions of L(Q). Ia. Annals Mathematical Logic, 11(2),

217–261.
Makkai, M. (1969). On the model theory of denumerably long formulas with finite strings of quantifiers.

Journal of Symbolic Logic, 34, 437–459.
Makkai, M. (1971) Svenonius sentences and Lindström’s theory on preservation theorems. Fundamenta

Mathematicae, 73(3), 219–233, 1971/72.
Makkai, M. (1974). Generalizing Vaught sentences from ω to strong confinality ω. Fundamenta Mathe-

maticae, 82, 105–119. Collection of articles dedicated to Andrzej Mostowski on the occasion of his
sixtieth birthday, VI.

Makowsky, J. A., & Shelah, S. (1983). Positive results in abstract model theory: A theory of compact logics.
Annals of Pure and Applied Logic, 25(3), 263–299.

Malitz, J. (1971). Infinitary analogs of theorems from first order model theory. Journal of Symbolic Logic,
36, 216–228.

Mekler, A., & Shelah, S. (1985). Stationary logic and its friends. I. Notre Dame Journal of Formal Logic,
26(2), 129–138.

Mekler, A., Shelah, S., & Väänänen, J. (1993) The Ehrenfeucht-Fraïssé-game of length ω1. Transactions
of the American Mathematical Society, 339(2), 567–580.

Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae, 44, 12–36.
Mostowski, A. (1968) Craig’s interpolation theorem in some extended systems of logic. In Logic, method-

ology and philosophical science III (Proceedings of Third International Congress, Amsterdam, 1967)
(pp. 87–103). Amsterdam: North-Holland.

Oikkonen, J. (1997). Undefinability of κ-well-orderings in L∞κ . Journal of Symbolic Logic, 62(3), 999–
1020.

Shelah, S. (1975). Generalized quantifiers and compact logic. Transactions of the American Mathematical
Society, 204, 342–364.

Shelah, S. (1985). Remarks in abstract model theory. Annals of Pure and Applied Logic, 29(3), 255–288.
Shelah, S. (1990). Classification theory and the number of nonisomorphic models. Volume 92 of Studies in

logic and the foundations of mathematics (2nd ed.). Amsterdam: North-Holland Publishing Co.
Shelah, S., & Väänänen, J. New infinitary languages with interpolation (to appear).
Shelah, S., & Väänänen, J. (2000). Stationary sets and infinitary logic. Journal of Symbolic Logic, 65(3),

1311–1320.
Svenonius, L. (1965). On the denumerable models of theories with extra predicates. In Theory of models

(Proceedings of 1963 International Symposium, Berkeley) (pp 376–389). Amsterdam: North-Holland.
Szabo, M. E. (1987). A cut elimination theorem for stationary logic. Annals of Pure and Applied Logic,

33(2), 181–193.
Tarski, A. (1958). Remarks on predicate logic with infinitely long expressions. Colloquium Mathematicum,

6, 171–176.
Tuuri, H. (1992). Relative separation theorems for Lκ+κ . Notre Dame Journal of Formal Logic, 33(3),

383–401.
Väänänen, J. (1979). Abstract logic and set theory. I. Definability. In Logic colloquium ’78 (Mons, 1978),

volume 97 of Stud. Logic Foundations Math. (pp. 391–421). Amsterdam: North-Holland.
Väänänen, J. (1985). Set-theoretic definability of logics. In Model-theoretic logics. Perspectives in mathe-

matical logic (pp. 599–643). New York: Springer.
Vaught, R. (1973). Descriptive set theory in Lω1ω . In Cambridge Summer School in Mathematical Logic

(Cambridge, England, 1971). Lecture notes in mathematics (Vol. 337, pp. 574–598). Berlin: Springer.

123


	The Craig Interpolation Theorem in abstract model theory
	Abstract
	1 Introduction
	2 The quantifier trail
	2.1 Deathtraps
	2.2 Positive results

	3 The infinitary trail
	3.1 Negative results
	3.2 Positive results
	3.3 Consistency properties
	3.4 Approximation of game expressions
	3.5 Between L and L for >1
	3.6 Going beyond L

	4 The higher order realm
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


