Uniform Definability in Propositional Dependence Logic

Fan Yang

Department of Mathematics and Statistics
University of Helsinki, Finland

Dependence Logic: Theory and Applications
Dagstuhl Seminar, February 12, 2013
1. Propositional dependence logic
2. Defining downwards closed collections of teams
3. n-context and uniform definability
4. \lor and \rightarrow are not uniformly definable in PD
This work is inspired by P. Galliani, *Epistemic Operators and Uniform Definability in Dependence Logic*, Studia Logica, to appear.
Propositional dependence logic
First-order dependence logic and its variants

[Väänänen 2007]:

Well-formed formulas of first-order dependence logic (\mathbb{D}) are given by the following grammar

$$\phi ::= \alpha \mid = (t_1, \ldots, t_n) \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall x \phi \mid \exists x \phi$$

where α is a first-order literal and t_1, \ldots, t_n are first-order terms.
First-order dependence logic and its variants

[Väänänen 2007]:

- Formulas of first-order dependence logic (D):
 \[\phi ::= \alpha \mid = (t_1, \ldots, t_n) \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall x \phi \mid \exists x \phi \]

[Abramsky, Väänänen 2009]:

- Formulas of first-order intuitionistic dependence logic (ID):
 \[\phi ::= \alpha \mid \bot \mid = (t) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \psi \mid \forall x \phi \mid \exists x \phi \]
Expressive power of logics

On sentence level

\[\Sigma_1 \quad \text{FO} \quad \text{FO (team)} \]

Y. Väänänen

Enderton, Walkoe
Propositional dependence logic and its variants

- Formulas of propositional dependence logic (PD):

$$\phi ::= p \mid \neg p \mid =(p_1, \ldots, p_n) \mid \phi \land \phi \mid \phi \otimes \phi$$

where p, p_1, \ldots, p_n are propositional variables.

- Formulas of propositional intuitionistic dependence logic (PID):

$$\phi ::= p \mid \bot \mid =(p) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \psi$$

- PD^\lor is the logic extended from PD by adding the intuitionistic disjunction \lor.

A team is a set of valuations, i.e. a set of functions $s : \text{Prop}_n \rightarrow \{0, 1\}$.

In particular, the emptyset \emptyset is a team.
A *team* is a set of valuations, i.e. a set of functions $s : \text{Prop}_n \rightarrow \{0, 1\}$.

In particular, the emptyset \emptyset is a team.
Let X be a team.

- $X \models p$ iff $s(p) = 1$ for all $s \in X$
- $X \models \neg p$ iff $s(p) = 0$ for all $s \in X$

- $X \models (p_1, \ldots, p_n, q)$ iff for any $s_1, s_2 \in X$ such that $s_1(p_1) = s_2(p_1), \ldots, s_1(p_n) = s_2(p_n)$, we have that $s_1(q) = s_2(q)$

- $X \models \varphi \land \psi$ iff $X \models \varphi$ and $X \models \psi$

- $X \models \varphi \otimes \psi$ iff there exist $Y, Z \subseteq X$ s.t. $X = Y \cup Z$, $Y \models \varphi$ and $Z \models \psi$

- $X \models \varphi \lor \psi$ iff $X \models \varphi$ or $X \models \psi$

- $X \models \varphi \rightarrow \psi$ iff for all $Y \subseteq X$, if $Y \models \varphi$ then $Y \models \psi$
The logics PD, PD^\lor, PID

- are downwards closed, namely

$$X \models \phi \text{ and } Y \subseteq X \implies Y \models \phi;$$

- and have the empty team property, namely

$$\emptyset \models \phi \text{ for all } \phi.$$
The logics PD, PD^\lor, PID

- are *downwards closed*, namely
 \[
 X \models \phi \text{ and } Y \subseteq X \implies Y \models \phi;
 \]

- and have the *empty team property*, namely
 \[
 \emptyset \models \phi \text{ for all } \phi.
 \]
Expressive power of logics

PD PD\lor PID
Expressive power of logics

\[PD = PD^\vee \quad \text{PID} \]

Huuskonen, 2012
Expressive power of logics

\[PD = PD^\lor = PID \]

Huuskonen, 2012
Expressive power of logics

\[PD = \text{PD}^\lor = \text{PID} \equiv \text{Inquisitive Logic} \]

Huuskonen, 2012

\[\text{[Ciardelli, Roelofsen, 2011]} \]

1 I thank Prof. Dick de Jongh and Dr. Tadeusz Litak for pointing out this surprising connection to me.
Defining downwards closed collections of teams
A team is a set of valuations, i.e. a set of functions $s : \text{Prop}_n \rightarrow \{0, 1\}$.

- A team with domain $\{p_1, \ldots, p_n\}$ is called an \textit{n-team}.
- A formula $\phi(p_1, \ldots, p_n)$ whose propositional variables are among p_1, \ldots, p_n is called an \textit{n-formula}.

![Diagram of a team with indices and valuations](image-url)
A team is a set of valuations, i.e. a set of functions $s : \text{Prop}_n \rightarrow \{0, 1\}$.

- A team with domain $\{p_1, \ldots, p_n\}$ is called an n-team.
- A formula $\phi(p_1, \ldots, p_n)$ whose propositional variables are among p_1, \ldots, p_n is called an n-formula.
Recall: Team

A team is a set of valuations, i.e. a set of functions \(s : \text{Prop}_n \rightarrow \{0, 1\} \).

- A team with domain \(\{p_1, \ldots, p_n\} \) is called an \textit{n-team}.
- A formula \(\phi(p_1, \ldots, p_n) \) whose propositional variables are among \(p_1, \ldots, p_n \) is called an \textit{n-formula}.

Fact: Fix \(n \), there are \(2^{2^n} \) many \(n \)-teams.
A team is a set of valuations, i.e. a set of functions \(s : \text{Prop}_n \rightarrow \{0, 1\} \).

- A team with domain \(\{p_1, \ldots, p_n\} \) is called an \(n\text{-team} \).
- A formula \(\phi(p_1, \ldots, p_n) \) whose propositional variables are among \(p_1, \ldots, p_n \) is called an \(n\text{-formula} \).

Fact: Fix \(n \), there are \(2^{2^n} \) many \(n\text{-teams} \).
Let ϕ be a n-formula of PD. Define

$$\boxtimes[\phi] = \{ X \subseteq 2^n \mid X \models \phi \}.$$

Let ∇_n be the family of all downwards closed collections of n-teams, i.e.,

$$\nabla_n = \{ \mathcal{K} \subseteq 2^{2^n} \mid X \in \mathcal{K}, \ Y \subseteq X \text{ imply } Y \in \mathcal{K} \}.$$

Clearly, $\boxtimes[\phi] \in \nabla_n$ for every n-formula ϕ of PD.
Let ϕ be a n-formula of PD. Define

$$[[\phi]] = \{X \subseteq 2^n \mid X \models \phi\}.$$

Let ∇_n be the family of all downwards closed collections of n-teams, i.e.,

$$\nabla_n = \{\mathcal{K} \subseteq 2^{2^n} \mid X \in \mathcal{K}, \ Y \subseteq X \text{ imply } Y \in \mathcal{K}\}.$$

Clearly, $[[\phi]] \in \nabla_n$ for every n-formula ϕ of PD.
Let ϕ be a n-formula of \mathbf{PD}. Define

$$[\phi] = \{X \subseteq 2^n \mid X \models \phi\}.$$

Let ∇_n be the family of all downwards closed collections of n-teams, i.e.,

$$\nabla_n = \{\mathcal{K} \subseteq 2^{2^n} \mid X \in \mathcal{K}, \ Y \subseteq X \text{ imply } Y \in \mathcal{K}\}.$$

Clearly, $[\phi] \in \nabla_n$ for every n-formula ϕ of \mathbf{PD}.
Lemma (Huuskonen)

For any n-team Y, there exists an n-formula Θ_Y of PD such that for any n-team X,

$$X \models \Theta_Y \iff Y \not\in X.$$

Theorem (Huuskonen)

Every downwards closed collection of n-teams is definable in PD.

Proof. (sketch) For any $\mathcal{K} \in \nabla_n$,

$$\mathcal{K} = \bigwedge_{i \in I} \Theta_{Y_i},$$

where $2^{2^n} \setminus \mathcal{K} = \{ Y_i \mid i \in I \}$, since for any n-team X,

$$X \models \bigwedge_{i \in I} \Theta_{Y_i} \iff Y_i \not\in X \text{ for all } i \in I \iff X \in \mathcal{K}.$$

Corollary: For every PD n-formula ϕ, we have that $\phi \equiv \bigwedge_{i \in I} \Theta_{Y_i}$.

Lemma (Huuskonen)

For any n-team Y, there exists an n-formula Θ_Y of \mathbf{PD} such that for any n-team X,

$$X \models \Theta_Y \iff Y \notin X.$$

Theorem (Huuskonen)

Every downwards closed collection of n-teams is definable in \mathbf{PD}.

Proof. (sketch) For any $\mathcal{K} \in \nabla_n$,

$$\mathcal{K} = \bigwedge_{i \in I} \Theta_{Y_i},$$

where $2^{2^n} \setminus \mathcal{K} = \{Y_i \mid i \in I\}$, since for any n-team X,

$$X \models \bigwedge_{i \in I} \Theta_{Y_i} \iff Y_i \notin X \text{ for all } i \in I \iff X \in \mathcal{K}.$$

Corollary: For every \mathbf{PD} n-formula ϕ, we have that $\phi \equiv \bigwedge_{i \in I} \Theta_{Y_i}$.

\[\square\]
Lemma (Huuskonen)

For any n-team Y, there exists an n-formula Θ_Y of PD such that for any n-team X,

$$X \models \Theta_Y \iff Y \not\in X.$$

Theorem (Huuskonen)

Every downwards closed collection of n-teams is definable in PD.

Proof. (sketch) For any $\mathcal{K} \in \nabla_n$,

$$\mathcal{K} = \bigwedge_{i \in I} \Theta_{Y_i},$$

where $2^{2^n} \setminus \mathcal{K} = \{Y_i \mid i \in I\}$, since for any n-team X,

$$X \models \bigwedge_{i \in I} \Theta_{Y_i} \iff Y_i \not\in X \text{ for all } i \in I \iff X \in \mathcal{K}.$$

Corollary: For every PD n-formula ϕ, we have that $\phi \equiv \bigwedge_{i \in I} \Theta_{Y_i}$.

\square
Lemma (Huuskonen)

For any n-team Y, there exists an n-formula Θ_Y of PD such that for any n-team X,

$$X \models \Theta_Y \iff Y \not\in X.$$

Theorem (Huuskonen)

Every downwards closed collection of n-teams is definable in PD.

Proof. (sketch) For any $\mathcal{K} \in \nabla_n$,

$$\mathcal{K} = \bigwedge_{i \in I} \Theta_{Y_i},$$

where $2^{2^n} \setminus \mathcal{K} = \{ Y_i \mid i \in I \}$, since for any n-team X,

$$X \models \bigwedge_{i \in I} \Theta_{Y_i} \iff Y_i \not\in X \text{ for all } i \in I \iff X \in \mathcal{K}.$$

Corollary: For every PD n-formula ϕ, we have that $\phi \equiv \bigwedge_{i \in I} \Theta_{Y_i}$.

\square
Since $\textbf{PD} = \textbf{PD}^\lor = \textbf{PID}$, both \lor and \rightarrow are definable in \textbf{PD}.

Let ϕ, ψ be n-formulas, where $\phi \equiv \bigwedge_{i \in I} \Theta x_i$ and $\psi \equiv \bigwedge_{j \in J} \Theta y_j$. Then we have that

$$\phi \lor \psi \equiv \bigwedge_{k \in K} \Theta z_k$$

for

$$\{z_k \mid k \in K\} = \{Z \subseteq 2^n \mid \exists i \in I, \exists j \in J, X_i \cup Y_j \subseteq Z\}.$$
Since $\text{PD} = \text{PD}^\lor = \text{PID}$, both \lor and \rightarrow are definable in PD.

Let ϕ, ψ be n-formulas, where $\phi \equiv \bigwedge_{i \in I} \Theta X_i$ and $\psi \equiv \bigwedge_{j \in J} \Theta Y_j$. Then we have that

$$\phi \lor \psi \equiv \bigwedge_{k \in K} \Theta Z_k$$

for

$$\{Z_k \mid k \in K\} = \{Z \subseteq 2^n \mid \exists i \in I, \exists j \in J, X_i \cup Y_j \subseteq Z\}.$$
n-context and uniform definability
Consider the logic PD^*, whose well-formed formulas are built from the following grammar:

$$
\phi ::= \Xi_i \mid p \mid \neg p \mid = (p_{i_1}, \ldots, p_{i_k}) \mid (\phi \land \phi) \mid (\phi \otimes \phi),
$$

where Ξ_i is a context atom, p is a propositional variable. We call formulas of the forms $\Xi_i, p, \neg p$ or $=(p_{i_1}, \ldots, p_{i_k})$ atoms.

Definition (n-context)

An n-context of type $\langle n, n \rangle$ is an n-formula $\phi[\Xi_1, \Xi_2]$ of PD^*, whose context atoms are Ξ_1, Ξ_2.

Consider the logic \mathbf{PD}^*, whose well-formed formulas are built from the following grammar:

$$\phi ::= \Xi_i \mid p \mid \neg p \mid = (p_{i_1}, \ldots, p_{i_k}) \mid (\phi \land \phi) \mid (\phi \otimes \phi),$$

where Ξ_i is a context atom, p is a propositional variable.

We call formulas of the forms $\Xi_i, p, \neg p$ or $=(p_{i_1}, \ldots, p_{i_k})$ atoms.

Definition (n-context)

An n-context of type $\langle n, n \rangle$ is an n-formula $\phi[\Xi_1, \Xi_2]$ of \mathbf{PD}^*, whose context atoms are Ξ_1, Ξ_2.

\[\]
Definition

Let $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$, $\phi[\Xi_1, \Xi_2]$ an n-context of type $\langle n, n \rangle$, and X an n-team.

We define the satisfaction relation $X \models \phi[\mathcal{K}_1, \mathcal{K}_2]$ recursively as follows:

- $X \models \Xi_i[\mathcal{K}_1, \mathcal{K}_2]$ iff $X \in \mathcal{K}_i$;
- $X \models \alpha[\mathcal{K}_1, \mathcal{K}_2]$ iff $X \models \alpha$ for α a non-context atom;
- $X \models (\psi \land \chi)[\mathcal{K}_1, \mathcal{K}_2]$ iff $X \models \psi[\mathcal{K}_1, \mathcal{K}_2]$ and $X \models \chi[\mathcal{K}_1, \mathcal{K}_2]$;
- $X \models (\psi \otimes \chi)[\mathcal{K}_1, \mathcal{K}_2]$ iff there exist Y, Z such that $X = Y \cup Z$, $Y \models \psi[\mathcal{K}_1, \mathcal{K}_2]$ and $Z \models \chi[\mathcal{K}_1, \mathcal{K}_2]$.
Define

$$
\llbracket \phi[k_1, k_2] \rrbracket := \{ X \subseteq 2^n \mid X \models \phi[k_1, k_2] \}.
$$

Definition (Uniform definability)

A binary operator $op : \nabla_2^n \rightarrow \nabla_n$ is said to be *uniformly definable* in PD iff there exists an n-context $\phi[\Xi_1, \Xi_2]$ of type $\langle n, n \rangle$ such that

$$
\llbracket \phi[k_1, k_2] \rrbracket = op(k_1, k_2).
$$

In particular, a binary connective $*$ is *uniformly definable* in PD iff there exists an n-context $\phi[\Xi_1, \Xi_2]$ such that for all n-formulas ϕ and ψ of PD,

$$
\llbracket \phi[\llbracket \psi \rrbracket, [\chi] \rrbracket \rrbracket = ,
$$
Define

\[\llbracket \phi[\kappa_1, \kappa_2] \rrbracket := \{ X \subseteq 2^n \mid X \models \phi[\kappa_1, \kappa_2] \}. \]

Definition (Uniform definability)

A binary operator \(op : \nabla_n^2 \to \nabla_n \) is said to be *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(\langle n, n \rangle \) such that

\[\llbracket \phi[\kappa_1, \kappa_2] \rrbracket = op(\kappa_1, \kappa_2). \]

In particular, a binary connective \(* \) is *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) such that for all \(n \)-formulas \(\phi \) and \(\psi \) of \(\text{PD} \),

\[\llbracket \phi[\llbracket \psi \rrbracket, \llbracket \chi \rrbracket] \rrbracket = , \]
Define
\[
[[\phi[\mathcal{K}_1, \mathcal{K}_2]]] := \{X \subseteq 2^n \mid X \models \phi[\mathcal{K}_1, \mathcal{K}_2]\}.
\]

Definition (Uniform definability)

A binary operator \(\text{op} : \nabla_n^2 \to \nabla_n \) is said to be *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(\langle n, n \rangle \) such that

\[
[[\phi[\mathcal{K}_1, \mathcal{K}_2]]] = \text{op}(\mathcal{K}_1, \mathcal{K}_2).
\]

In particular, a binary connective \(\ast \) is *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) such that for all \(n \)-formulas \(\phi \) and \(\psi \) of \(\text{PD} \),

\[
[[\phi[\psi, \chi]]] = [[\psi]] \ast [[\chi]],
\]
Define
\[
\llbracket \phi[\mathcal{K}_1, \mathcal{K}_2] \rrbracket := \{ X \subseteq 2^n \mid X \models \phi[\mathcal{K}_1, \mathcal{K}_2] \}.
\]

Definition (Uniform definability)

A binary operator \(op : \nabla^2_n \to \nabla_n \) is said to be *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(\langle n, n \rangle \) such that
\[
\llbracket \phi[\mathcal{K}_1, \mathcal{K}_2] \rrbracket = op(\mathcal{K}_1, \mathcal{K}_2).
\]

In particular, a binary connective \(* \) is *uniformly definable* in \(\text{PD} \) iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) such that for all \(n \)-formulas \(\phi \) and \(\psi \) of \(\text{PD} \),
\[
\llbracket \phi \llbracket \llbracket \psi \rrbracket, \llbracket \chi \rrbracket \rrbracket = \llbracket \psi \ast \chi \rrbracket,
\]
Define

\[
\llbracket \phi[\mathcal{K}_1, \mathcal{K}_2] \rrbracket := \{ X \subseteq 2^n \mid X \models \phi[\mathcal{K}_1, \mathcal{K}_2] \}.
\]

Definition (Uniform definability)

A binary operator \(op : \nabla_2^n \rightarrow \nabla_n \) is said to be *uniformly definable* in PD iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(\langle n, n \rangle \) such that

\[
\llbracket \phi[\mathcal{K}_1, \mathcal{K}_2] \rrbracket = op(\mathcal{K}_1, \mathcal{K}_2).
\]

In particular, a binary connective \(* \) is *uniformly definable* in PD iff there exists an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) such that for all \(n \)-formulas \(\phi \) and \(\psi \) of PD,

\[
\llbracket \phi[\llbracket \psi \rrbracket, \llbracket \chi \rrbracket] \rrbracket = \llbracket \psi * \chi \rrbracket,
\]

namely, for all \(n \)-team \(X \),

\[
X \models \phi[\llbracket \psi \rrbracket, \llbracket \chi \rrbracket] \iff X \models \psi * \chi.
\]
Definition (syntax tree)

The *syntax tree* of an n-context $\phi(\Xi_1, \Xi_2)$ is a labelled binary tree $\mathcal{T}_\phi = (T, \preceq, r, f)$ such that

- $T := m + 1$, where m is the number of all parentheses in ϕ;
- $r := 0$;
- $\preceq := \{(0, k) | 0 < k \leq m\} \cup \{(k_1, k_2) | \text{the } k_2\text{-th parenthesis is inside the scope of the } k_1\text{-th parenthesis }\}$;
- f is a function $f : T \rightarrow \text{Sub}(\phi)$ satisfying
 - $f(0) = \phi$;
 - $f(k) := \psi$, where ψ is the subformula of ϕ bounded by the k-the parenthesis.
\[
\left((p_1 \land \Xi_1) \otimes (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right)
\]
\[
(\ (p_1 \land \Xi_1 \) \otimes (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \)
\]
\[
((p_1 \land \Xi_1) \otimes (\Xi_1 \land \Xi_2))
\]
\[(p_1 \land \Xi_1) \otimes \left(\left(= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)\right)\right)\]
Truth Function

\[
\left((p_1 \land \Xi_1) \otimes \left(\equiv (p_2, p_3) \otimes (\Xi_1 \land \Xi_2) \right) \right)
\]
Truth Function

\[X \models \left((p_1 \land \Xi_1) \otimes \left(= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2) \right) \right)[\mathcal{K}_1, \mathcal{K}_2] \]
Truth Function

\[
X \models \left((p_1 \land \Xi_1) \otimes (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right) [\mathcal{K}_1, \mathcal{K}_2]
\]

\[
\sigma : \exists \phi \rightarrow \wp(\mathcal{X})
\]
\[X \models (p_1 \land \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2] \]

\[Y \models (p_1 \land \Xi_1)[\mathcal{K}_1, \mathcal{K}_2] \]

\[Z \models (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2] \]

\[\sigma : \Sigma_\phi \mapsto \wp(X) \]
Truth Function

\[X \models (p_1 \land \Xi_1) \otimes (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2] \]

\[Y \models (p_1 \land \Xi_1)[\mathcal{K}_1, \mathcal{K}_2] \]

\[Z \models (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2] \]

\[\sigma : \Sigma_\phi \rightarrow \wp(X) \]
Truth Function

\[
X \models \left((p_1 \land \Xi_1) \otimes (\vartheta(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right)[K_1, K_2]
\]

\[
Y \models (p_1 \land \Xi_1)[K_1, K_2]
\]

\[
Z \models (\vartheta(p_2, p_3) \otimes (\Xi_1 \land \Xi_2))[K_1, K_2]
\]

\[
W \models (p_2, p_3)[K_1, K_2]
\]

\[
U \models (\Xi_1 \land \Xi_2)[K_1, K_2]
\]

\[
\Sigma_\phi \rightarrow \vartheta(X)
\]
Truth Function

\[X \models \left((p_1 \land \Xi_1) \otimes (\phi(p_2, p_3) \land (\Xi_1 \land \Xi_2)) \right)[\mathcal{K}_1, \mathcal{K}_2] \]

\[Y \models (p_1 \land \Xi_1)[\mathcal{K}_1, \mathcal{K}_2] \]

\[Z \models (\phi(p_2, p_3) \land (\Xi_1 \land \Xi_2))[\mathcal{K}_1, \mathcal{K}_2] \]

\[W \models (p_2, p_3)[\mathcal{K}_1, \mathcal{K}_2] \]

\[U \models (\Xi_1 \land \Xi_2)[\mathcal{K}_1, \mathcal{K}_2] \]

\[Y \models p_1[\mathcal{K}_1, \mathcal{K}_2] \]

\[Y \models \Xi_1[\mathcal{K}_1, \mathcal{K}_2] \]

\[U \models \Xi_1[\mathcal{K}_1, \mathcal{K}_2] \]

\[U \models \Xi_2[\mathcal{K}_1, \mathcal{K}_2] \]

\[\sigma : \Sigma_\phi \rightarrow \wp(X) \]
Definition (truth function)

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X a n-team and $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$. A function $\sigma : \mathcal{S}_\phi \rightarrow \wp(X)$ is called a truth function for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X iff

(i) $\sigma(0) = X$;

(ii) for all $k \in \mathcal{S}_\phi$, $\sigma(k) \models f(k)[\mathcal{K}_1, \mathcal{K}_2]$;

(iii) if k is labeled with $\psi \land \chi$ and k_0, k_1 are two children of k, then $\sigma(k) = \sigma(k_0) = \sigma(k_1)$;

(iv) if k is labeled with $\psi \otimes \chi$ and k_0, k_1 are two children of k, then $\sigma(k) = \sigma(k_0) \cup \sigma(k_1)$;
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $K_1, K_2 \in \nabla_n$. Then $X \models \phi[K_1, K_2]$ iff there exists a truth function σ for $\phi[K_1, K_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$. □

\[
\left((p_1 \land \Xi_1) \land \left(= (p_2, p_3) \land (\Xi_1 \land \Xi_2) \right) \right)
\]

\[
(p_1 \land \Xi_1)
\]

\[
(\Xi_1 \land \Xi_2)
\]

\[
\Xi_1
\]

\[
\Xi_2
\]

\[
(p_1 \land \Xi_1)
\]

\[
(\Xi_1 \land \Xi_2)
\]

\[
(p_1 \land \Xi_1)
\]

\[
(\Xi_1 \land \Xi_2)
\]

\[
(p_1 \land \Xi_1)
\]

\[
(\Xi_1 \land \Xi_2)
\]
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$. Then $X \models \phi[\mathcal{K}_1, \mathcal{K}_2]$ iff there exists a truth function σ for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$. □
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $K_1, K_2 \in \bigtriangledown_n$. Then $X \models \phi[K_1, K_2]$ iff there exists a truth function σ for $\phi[K_1, K_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$. □

\[
X \models (p_1 \land \Xi_1) \otimes (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2))^{[K_1, K_2]}
\]

\[
\sigma : \sum_\phi \rightarrow \wp(X)
\]
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$. Then $X \models \phi[\mathcal{K}_1, \mathcal{K}_2]$ iff there exists a truth function σ for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$.

$X \models \left((p_1 \land \Xi_1) \otimes ((p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right)[\mathcal{K}_1, \mathcal{K}_2]$

$Y \models (p_1 \land \Xi_1)[\mathcal{K}_1, \mathcal{K}_2]$

$Z \models ((p_2, p_3) \otimes (\Xi_1 \land \Xi_2))[\mathcal{K}_1, \mathcal{K}_2]$

$\sigma : \Sigma_\phi \rightarrow \wp(X)$
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$. Then $X \models \phi[\mathcal{K}_1, \mathcal{K}_2]$ iff there exists a truth function σ for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$.

\[
X \models (p_1 \land \Xi_1) \otimes ((p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2]
\]

\[
\sigma : \Xi_\phi \rightarrow \wp(X)
\]
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $K_1, K_2 \in \nabla_n$. Then $X \models \phi[K_1, K_2]$ iff there exists a truth function σ for $\phi[K_1, K_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$. \square

$$X \models ((p_1 \wedge \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \wedge \Xi_2)))[K_1, K_2]$$

$$Y \models (p_1 \wedge \Xi_1)[K_1, K_2]$$

$$Z \models (=(p_2, p_3) \otimes (\Xi_1 \wedge \Xi_2))[K_1, K_2]$$

$$W \models =(p_2, p_3)[K_1, K_2]$$

$$U \models (\Xi_1 \wedge \Xi_2)[K_1, K_2]$$

$$\sigma : \Sigma_{\phi} \rightarrow \wp(X)$$
Theorem

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$, X an n-team and $\mathcal{K}_1, \mathcal{K}_2 \in \nabla_n$. Then $X \models \phi[\mathcal{K}_1, \mathcal{K}_2]$ iff there exists a truth function σ for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof. Easy, by induction on $\phi[\Xi_1, \Xi_2]$.

\[
X \models (p_1 \land \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [\mathcal{K}_1, \mathcal{K}_2]
\]
Recall:

A function $\sigma : \mathcal{T}_\phi \rightarrow \wp(X)$ is called a truth function for $\phi[K_1, K_2]$ over X iff

(i) $\sigma(0) = X$;

(ii) for all $k \in \mathcal{T}_\phi$, $\sigma(k) \models f(k)[K_1, K_2]$;

(iii) if k is labeled with $(\psi \land \chi)$ and k_0, k_1 are two child nodes of k, then $\sigma(k) = \sigma(k_0) = \sigma(k_1)$;

(iv) if k is labeled with $(\psi \otimes \chi)$ and k_0, k_1 are two child nodes of k, then $\sigma(k) = \sigma(k_0) \cup \sigma(k_1)$;

Lemma (I)

If $\sigma : \mathcal{T}_\phi \rightarrow \wp(X)$ is a function which satisfies conditions (i), (iii), (iv) and condition (ii) with respect to K_1, K_2 for all k labeled with atoms, then σ is a truth function for $\phi[K_1, K_2]$ over X.
Recall:

A function \(\sigma : \mathcal{I}_\phi \rightarrow \wp(X) \) is called a truth function for \(\phi[K_1, K_2] \) over \(X \) iff

(i) \(\sigma(0) = X \);

(ii) for all \(k \in \mathcal{I}_\phi \), \(\sigma(k) \models f(k)[K_1, K_2] \);

(iii) if \(k \) is labeled with \((\psi \land \chi) \) and \(k_0, k_1 \) are two child nodes of \(k \), then \(\sigma(k) = \sigma(k_0) = \sigma(k_1) \);

(iv) if \(k \) is labeled with \((\psi \otimes \chi) \) and \(k_0, k_1 \) are two child nodes of \(k \), then \(\sigma(k) = \sigma(k_0) \cup \sigma(k_1) \);

Lemma (I)

If \(\sigma : \mathcal{I}_\phi \rightarrow \wp(X) \) is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to \(K_1, K_2 \) for all \(k \) labeled with atoms, then \(\sigma \) is a truth function for \(\phi[K_1, K_2] \) over \(X \).
Lemma (I)

If $\sigma : \mathcal{F}_\phi \rightarrow \mathcal{F}(X)$ is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to K_1, K_2 for all k labeled with atoms, then σ is a truth function for $\phi[K_1, K_2]$ over X.

Proof.

$$ \left((p_1 \land \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right) $$
Lemma (I)

If $\sigma : \mathfrak{S}_{\phi} \rightarrow \wp(X)$ is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to $\mathcal{K}_1, \mathcal{K}_2$ for all k labeled with atoms, then σ is a truth function for $\phi[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof.

$$X ?? \models \left((p_1 \land \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right)[\mathcal{K}_1, \mathcal{K}_2]$$
Lemma (I)

If $\sigma : \mathcal{Z}_\phi \rightarrow \wp(X)$ is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to K_1, K_2 for all k labeled with atoms, then σ is a truth function for $\phi[K_1, K_2]$ over X.

Proof.

$$X \models \left((p_1 \land \Xi_1) \otimes \left(= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2) \right) \right)[K_1, K_2]$$

$$Y \models (p_1 \land \Xi_1)[K_1, K_2]$$
$$Y \models (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)$$
Lemma (I)

If \(\sigma : \mathcal{T} \phi \rightarrow \mathcal{V}(X) \) is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to \(K_1, K_2 \) for all \(k \) labeled with atoms, then \(\sigma \) is a truth function for \(\phi[K_1, K_2]\) over \(X \).

Proof.

\[
X \models (p_1 \land \Xi_1) \otimes (p_2, p_3) \otimes (\Xi_1 \land \Xi_2) \Big) \Big)[K_1, K_2]
\]

\[
Y \models (p_1 \land \Xi_1)[K_1, K_2]
\]

\[
W \cup U \models (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)[K_1, K_2]
\]

\[
W \models (p_2, p_3)[K_1, K_2]
\]

\[
U \models (\Xi_1 \land \Xi_2)[K_1, K_2]
\]

\[
Y \models p_1[K_1, K_2]
\]

\[
Y \models \Xi_1[K_1, K_2]
\]

\[
U \models \Xi_1[K_1, K_2]
\]

\[
U \models \Xi_2[K_1, K_2]
\]
Lemma (I)

If \(\sigma : \mathcal{T}_\phi \to \wp(\phi(X)) \) is a function which satisfies conditions (i), (iii), (iv) and condition (ii) with respect to \(K_1, K_2 \) for all \(k \) labeled with atoms, then \(\sigma \) is a truth function for \(\phi[K_1, K_2] \) over \(X \).

Proof.

\[
X = Y \cup W \cup U \models \left((p_1 \land \Xi_1) \otimes (\equiv(p_2, p_3) \otimes (\Xi_1 \land \Xi_2))\right)[K_1, K_2]
\]

\[
Y \models (p_1 \land \Xi_1)[K_1, K_2]
\]

\[
W \cup U \models (\equiv(p_2, p_3) \otimes (\Xi_1 \land \Xi_2))[K_1, K_2]
\]

\[
W \models \equiv(p_2, p_3)[K_1, K_2]
\]

\[
Y \models \Xi_1[K_1, K_2]
\]

\[
U \models \Xi_1 \land \Xi_2[K_1, K_2]
\]

\[
U \models \Xi_2[K_1, K_2]
\]
Lemma (I)

If $\sigma : \mathcal{S}_\phi \rightarrow \mathcal{F}(X)$ is a function which satisfies conditions (i),(iii),(iv) and condition (ii) with respect to $\mathcal{K}_1, \mathcal{K}_2$ for all k labeled with atoms, then σ is a truth function for $\mathcal{F}[\mathcal{K}_1, \mathcal{K}_2]$ over X.

Proof.

$$X = Y \cup W \cup U \models \left((p_1 \land \Xi_1) \otimes (=(p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) \right)[\mathcal{K}_1, \mathcal{K}_2]$$
∧ and → are not uniformly definable in PD
Fact: Let σ be a truth function for $\phi[K_1, K_2]$ over X.

In the syntax tree \mathcal{T}_{ϕ}, if a node k has no ancestor node with a label of the form $\psi \otimes \chi$, then $\sigma(k) = X$.

\[
X \models ((p_1 \land \Xi_1) \land (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2))) [K_1, K_2]
\]

\[
X \models (p_1 \land \Xi_1) [K_1, K_2]
\]

\[
X \models (= (p_2, p_3) \otimes (\Xi_1 \land \Xi_2)) [K_1, K_2]
\]

\[
W \models = (p_2, p_3) [K_1, K_2]
\]

\[
U \models (\Xi_1 \land \Xi_2) [K_1, K_2]
\]

\[
U \models \Xi_1 [K_1, K_2]
\]

\[
U \models \Xi_2 [K_1, K_2]
\]
Observation

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Σ_ϕ there is a node k labeled with Ξ_1, which has no ancestor node with a label of the form $\psi \otimes \chi$. Then $\phi[\Xi_1, \Xi_2]$ does not define the intuitionistic disjunction \lor, namely

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]]$$

fails for some PD n-formulas ψ, χ.

Proof. Let $\psi := \bot$ and $\chi := \top$. Then we have that for the full n-team 2^n,

$$2^n \models \top, \text{ so } 2^n \in [[\bot \lor \top]].$$

Suppose $2^n \in [[\phi[[\bot], [\top]]]]$, i.e., $2^n \models \phi[[\bot], [\top]]$, and σ is a truth function for $\phi[[\bot], [\top]]$ over 2^n. By Fact, we must have that $\sigma(k) = 2^n$, which by the definition of a truth function means that $2^n \models \bot$; a contradiction.
Observation

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree \mathcal{T}_ϕ there is a node k labeled with Ξ_1, which has no ancestor node with a label of the form $\psi \otimes \chi$. Then $\phi[\Xi_1, \Xi_2]$ does not define the intuitionistic disjunction \lor, namely

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]]$$

tails for some $\text{PD} \ n$-formulas ψ, χ.

Proof. Let $\psi := \bot$ and $\chi := \top$. Then we have that for the full n-team 2^n,

$$2^n \models \top, \text{ so } 2^n \in [[\bot \lor \top]].$$

Suppose $2^n \in [[\phi[[\bot], [\top]]]]$, i.e., $2^n \models \phi[[\bot], [\top]]$, and σ is a truth function for $\phi[[\bot], [\top]]$ over 2^n. By Fact, we must have that $\sigma(k) = 2^n$, which by the definition of a truth function means that $2^n \models \bot$; a contradiction.
Observation

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Σ_ϕ there is a node k labeled with Ξ_1, which has no ancestor node with a label of the form $\psi \otimes \chi$. Then $\phi[\Xi_1, \Xi_2]$ does not define the intuitionistic disjunction \vee, namely

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]]$$

fails for some PD n-formulas ψ, χ.

Proof. Let $\psi := \bot$ and $\chi := \top$. Then we have that for the full n-team 2^n,

$$2^n \models \top, \text{ so } 2^n \in [[\bot \lor \top]].$$

Suppose $2^n \in [[\phi[[\bot], [\top]]]]$, i.e., $2^n \models \phi[[\bot], [\top]]$, and σ is a truth function for $\phi[[\bot], [\top]]$ over 2^n. By Fact, we must have that $\sigma(k) = 2^n$, which by the definition of a truth function means that $2^n \models \bot$; a contradiction.
Observation

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Σ_ϕ there is a node k labeled with Ξ_1, which has no ancestor node with a label of the form $\psi \otimes \chi$. Then $\phi[\Xi_1, \Xi_2]$ does not define the intuitionistic disjunction \lor, namely

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]]$$

fails for some PD n-formulas ψ, χ.

Proof. Let $\psi := \bot$ and $\chi := \top$. Then we have that for the full n-team 2^n,

$$2^n \models \top, \text{ so } 2^n \in [\bot \lor \top].$$

Suppose $2^n \in [\phi[[\bot], [\top]]]$, i.e., $2^n \models \phi[[\bot], [\top]]$, and σ is a truth function for $\phi[[\bot], [\top]]$ over 2^n. By Fact, we must have that $\sigma(k) = 2^n$, which by the definition of a truth function means that $2^n \models \bot$; a contradiction.
Observation

Let $\phi[\Xi_1, \Xi_2]$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Σ_ϕ there is a node k labeled with Ξ_1, which has no ancestor node with a label of the form $\psi \otimes \chi$. Then $\phi[\Xi_1, \Xi_2]$ does not define the intuitionistic disjunction \lor, namely

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]]$$

fails for some PD n-formulas ψ, χ.

Proof. Let $\psi := \bot$ and $\chi := \top$. Then we have that for the full n-team 2^n,

$$2^n \models \top, \text{ so } 2^n \in [[\bot \lor \top]].$$

Suppose $2^n \in [[\phi[[\bot], [\top]]]]$, i.e., $2^n \models \phi[[\bot], [\top]]$, and σ is a truth function for $\phi[[\bot], [\top]]$ over 2^n. By Fact, we must have that $\sigma(k) = 2^n$, which by the definition of a truth function means that $2^n \models \bot$; a contradiction.
Lemma (II)

Let \(\phi[\Xi_1, \Xi_2] \neq \bot \) be an \(n \)-context of type \(\langle n, n \rangle \) such that in the syntax tree \(\Xi_\phi \) every node labeled with \(\Xi_i \) has an ancestor node labeled with a formula of the form \(\psi \otimes \chi \).

If \(2^n \models \phi[[\top]], [[\top]] \), then there exists a truth function \(\sigma \) for \(\phi[[\top]], [[\top]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_i \) in \(\Xi_\phi \), \(\sigma(k) \not\subseteq 2^n \).

Proof.

![Diagram of the syntax tree \(\Xi_\phi \) with labels and subformulas.](image)
Lemma (II)

Let $\phi[\Xi_1, \Xi_2] \not\equiv \perp$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Ξ_ϕ every node labeled with Ξ_i has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

If $2^n \models \phi[[T], [T]]$, then there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_i in Ξ_ϕ, $\sigma(k) \not\subseteq 2^n$.

Proof.

$2^n \models \left((p_1 \otimes \Xi_1) \land (=(p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right)[[T], [T]]$

Diagram:

```
0
 / \  \\
1   8
 / \   /
2 3 4 7
 / \\  /   \
5 6 8 7
```

Ξ_1
Lemma (II)

Let \(\phi[\Xi_1, \Xi_2] \not\equiv \bot \) be an n-context of type \(\langle n, n \rangle \) such that in the syntax tree \(T_\phi \) every node labeled with \(\Xi_i \) has an ancestor node labeled with a formula of the form \(\psi \otimes \chi \).

If \(2^n \models \phi[[T], [T]] \), then there exists a truth function \(\sigma \) for \(\phi[[T], [T]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_i \) in \(T_\phi \), \(\sigma(k) \not\subseteq 2^n \).

Proof.

\[
2^n \models \left((p_1 \otimes \Xi_1) \land (= (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right)[[T], [T]]
\]
Lemma (II)

Let $\phi[\Xi_1, \Xi_2] \not\equiv \bot$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Ξ_ϕ every node labeled with Ξ_i has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

If $2^n \models \phi[[T], [T]]$, then there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_i in Ξ_ϕ, $\sigma(k) \subset 2^n$.

Proof.

$2^n \models \left((p_1 \otimes \Xi_1) \land (= (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right) [[T], [T]]$
Lemma (II)

Let \(\varphi[\Xi_1, \Xi_2] \neq \bot \) be an \(n \)-context of type \(\langle n, n \rangle \) such that in the syntax tree \(\mathcal{T}_\varphi \) every node labeled with \(\Xi_i \) has an ancestor node labeled with a formula of the form \(\psi \otimes \chi \).

If \(2^n \models \varphi[[T], [T]] \), then there exists a truth function \(\sigma \) for \(\varphi[[T], [T]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_i \) in \(\mathcal{T}_\varphi \), \(\sigma(k) \not\subseteq 2^n \).

Proof.

\[
2^n \models \left((p_1 \otimes \Xi_1) \land (=(p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right) [[T], [T]]
\]
Lemma (II)

Let $\phi[\Xi_1, \Xi_2] \not\equiv \bot$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Ξ_ϕ every node labeled with Ξ_i has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

If $2^n \models \phi[[T], [T]]$, then there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_i in Ξ_ϕ, $\sigma(k) \subsetneq 2^n$.

Proof.

$$2^n \models \left((p_1 \otimes \Xi_1) \land (\equiv (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right)[[T], [T]]$$

![Diagram](image.png)
Lemma (II)

Let $\phi[\Xi_1, \Xi_2] \not\equiv \bot$ be an n-context of type $\langle n, n \rangle$ such that in the syntax tree Ξ_ϕ every node labeled with Ξ_i has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

If $2^n \models \phi[[T], [T]]$, then there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_i in Ξ_ϕ, $\sigma(k) \subsetneq 2^n$.

Proof.

$$2^n \models \left((p_1 \otimes \Xi_1) \land (= (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right)[[T], [T]]$$

$$= (p_1 \otimes \Xi_1)$$

$$= (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)$$

$$Y \models = (p_2, p_3)[[T], [T]]$$

$$Z \models (\Xi_1 \otimes \Xi_2)[[T], [T]]$$

$$W \models \Xi_1[[T], [T]]$$

$$U \models \Xi_2[[T], [T]]$$
Lemma (II)

Let \(\phi[\Xi_1, \Xi_2] \neq \bot \) be an \(n \)-context of type \(\langle n, n \rangle \) such that in the syntax tree \(\mathcal{Z}_\phi \) every node labeled with \(\Xi_i \) has an ancestor node labeled with a formula of the form \(\psi \otimes \chi \).

If \(2^n \models \phi[[T], [T]] \), then there exists a truth function \(\sigma \) for \(\phi[[T], [T]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_i \) in \(\mathcal{Z}_\phi \), \(\sigma(k) \subseteq 2^n \).

Proof.

\[
2^n \models \left((p_1 \otimes \Xi_1) \land (= (p_2, p_3) \otimes (\Xi_1 \otimes \Xi_2)) \right) [[T], [T]]
\]
Theorem

Intuitionistic disjunction \lor is not uniformly definable in PD.

Proof. Suppose \lor was uniformly definable in PD. Then there would exist an n-context $\phi[\Xi_1, \Xi_2]$ of type $\langle n, n \rangle$ such that for all PD n-formulas ψ, χ,

$$[\phi[[\psi], [\chi]]] = [\psi \lor \chi],$$

namely, for all n-team X,

$$X \models \phi[[\psi], [\chi]] \iff X \models \psi \text{ or } X \models \chi.$$ (*)

Clearly, $\phi[\Xi_1, \Xi_2] \not=} \bot$ and by Observation, in the syntax tree T_ϕ of $\phi[\Xi_1, \Xi_2]$, every node labeled with Ξ_1 or Ξ_2 has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

Clearly, $2^n \models \top$, hence by (*) we have that

$$2^n \models \phi[[\top], [\top]],$$

thus by Lemma (II), there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in T_ϕ, $\sigma(k) \subseteq 2^n$.
Theorem

Intuitionistic disjunction \(\lor \) *is not uniformly definable in PD.*

Proof. Suppose \(\lor \) was uniformly definable in PD. Then there would exist an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(\langle n, n \rangle \) such that for all PD \(n \)-formulas \(\psi, \chi \),

\[
[\phi[[\psi], [\chi]]] = [\psi \lor \chi],
\]

namely, for all \(n \)-team \(X \),

\[
X \models \phi[[\psi], [\chi]] \iff X \models \psi \text{ or } X \models \chi.
\]

\((*)\)

Clearly, \(\phi[\Xi_1, \Xi_2] \neq \bot \) and by Observation, in the syntax tree \(T_\phi \) of \(\phi[\Xi_1, \Xi_2] \), every node labeled with \(\Xi_1 \) or \(\Xi_2 \) has an ancestor node labeled with a formula of the form \(\psi \otimes \chi \).

Clearly, \(2^n \models \top \), hence by \((*)\) we have that

\[
2^n \models \phi[[\top], [\top]],
\]

thus by Lemma (II), there exists a truth function \(\sigma \) for \(\phi[[\top], [\top]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_1 \) or \(\Xi_2 \) in \(T_\phi \), \(\sigma(k) \subsetneq 2^n \).
Theorem

Intuitionistic disjunction \vee is not uniformly definable in PD.

Proof. Suppose \vee was uniformly definable in PD. Then there would exist an n-context $\phi[\Xi_1, \Xi_2]$ of type $\langle n, n \rangle$ such that for all PD n-formulas ψ, χ,

$$[[\phi[[\psi],[\chi]]]] = [[\psi \vee \chi]],$$

namely, for all n-team X,

$$X \models \phi[[\psi],[\chi]] \iff X \models \psi \text{ or } X \models \chi. \quad (*)$$

Clearly, $\phi[\Xi_1, \Xi_2] \neq \bot$ and by Observation, in the syntax tree Σ_ϕ of $\phi[\Xi_1, \Xi_2]$, every node labeled with Ξ_1 or Ξ_2 has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

Clearly, $2^n \models \top$, hence by $(*)$ we have that

$$2^n \models \phi[[\top],[\top]],$$

thus by Lemma (II), there exists a truth function σ for $\phi[[\top],[\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in Σ_ϕ, $\sigma(k) \subsetneq 2^n$.
Theorem

Intuitionistic disjunction \lor is not uniformly definable in PD.

Proof. Suppose \lor was uniformly definable in PD. Then there would exist an n-context $\phi[\Xi_1, \Xi_2]$ of type $\langle n, n \rangle$ such that for all PD n-formulas ψ, χ,

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]],$$

namely, for all n-team X,

$$X \models \phi[[\psi], [\chi]] \iff X \models \psi \text{ or } X \models \chi. \quad (*)$$

Clearly, $\phi[\Xi_1, \Xi_2] \neq \bot$ and by Observation, in the syntax tree \mathcal{T}_ϕ of $\phi[\Xi_1, \Xi_2]$, every node labeled with Ξ_1 or Ξ_2 has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

Clearly, $2^n \models \top$, hence by (*) we have that

$$2^n \models \phi[[\top], [\top]],$$

thus by Lemma (II), there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in \mathcal{T}_ϕ, $\sigma(k) \subsetneq 2^n$.

33/36
Theorem

Intuitionistic disjunction \lor is not uniformly definable in PD.

Proof. Suppose \lor was uniformly definable in PD. Then there would exist an n-context $\phi[\Xi_1, \Xi_2]$ of type $\langle n, n \rangle$ such that for all PD n-formulas ψ, χ,

$$[[\phi[[\psi], [\chi]]]] = [[\psi \lor \chi]],$$

namely, for all n-team X,

$$X \models \phi[[\psi], [\chi]] \iff X \models \psi \text{ or } X \models \chi. \quad (*)$$

Clearly, $\phi[\Xi_1, \Xi_2] \neq \bot$ and by Observation, in the syntax tree T_ϕ of $\phi[\Xi_1, \Xi_2]$, every node labeled with Ξ_1 or Ξ_2 has an ancestor node labeled with a formula of the form $\psi \otimes \chi$.

Clearly, $2^n \models \top$, hence by $(*)$ we have that

$$2^n \models \phi[[\top], [\top]],$$

thus by Lemma (II), there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in T_ϕ, $\sigma(k) \subsetneq 2^n$.

33/36
Proof (ctd). $X \models \phi[[\psi], [\chi]] \iff X \models \psi$ or $X \models \chi$.

... ... there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in Ξ_ϕ, $\sigma(k) \subsetneq 2^n$.

\[\Xi_1 \Xi_2 \]

\[k_1 \quad a \quad b \quad c \quad k_2 \quad k_3 \]

Ξ_1 Ξ_1 Ξ_2
Proof (ctd). $X \models \phi[[\psi], [\chi]] \iff X \models \psi$ or $X \models \chi$. (*)

... ... there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in \mathcal{G}_ϕ, $\sigma(k) \subset 2^n$.

![Diagram](34/36)
Proof (ctd). $X \models \phi[[\psi], [\chi]] \iff X \models \psi$ or $X \models \chi$.

... ... there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in \mathcal{T}_ϕ, $\sigma(k) \subsetneq 2^n$.

Now, as $2^n \notin \sigma(k)$, we have that [Recall: $X \models \Theta_{2^n}$ iff $2^n \notin X$]

$$
\sigma(k) \models \Theta_{2^n}, \text{ i.e. } \sigma(k) \models f(k)[[\Theta_{2^n}], [\Theta_{2^n}]].
$$
Proof (ctd). \(X \models \phi[[\psi], [\chi]] \iff X \models \psi \) or \(X \models \chi \). (*)

... ... there exists a truth function \(\sigma \) for \(\phi[[\top], [\top]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_1 \) or \(\Xi_2 \) in \(\mathcal{X}_\phi \), \(\sigma(k) \subset 2^n \).

Now, as \(2^n \not\subset \sigma(k) \), we have that

[Recall: \(X \models \Theta_{2^n} \) iff \(2^n \not\subset X \)]

\[
\sigma(k) \models \Theta_{2^n}, \text{ i.e. } \sigma(k) \models f(k)[[[\Theta_{2^n}],[\Theta_{2^n}]]].
\]
Proof (ctd). $X \models \phi[[\psi], [\chi]] \iff X \models \psi$ or $X \models \chi$. (*)

... ... there exists a truth function σ for $\phi[[\top], [\top]]$ over 2^n such that for all nodes k labeled with Ξ_1 or Ξ_2 in \mathcal{T}_ϕ, $\sigma(k) \subsetneq 2^n$.

Now, as $2^n \not\subseteq \sigma(k)$, we have that

[Recall: $X \models \Theta_{2^n}$ iff $2^n \not\subseteq X$]

$$\sigma(k) \models \Theta_{2^n}, \text{ i.e. } \sigma(k) \models f(k)[[\Theta_{2^n}], [\Theta_{2^n}]].$$

Hence, by Lemma (I), we obtain that σ is also a truth function for $\phi[[\Theta_{2^n}], [\Theta_{2^n}]]$ over 2^n.

\[\sigma(k_1) \models \Xi_1[[\Theta_{2^n}], [\Theta_{2^n}]] \]

\[\sigma(k_2) \models \Xi_1[[\Theta_{2^n}], [\Theta_{2^n}]] \]

\[\sigma(k_3) \models \Xi_2[[\Theta_{2^n}], [\Theta_{2^n}]] \]
Proof (ctd). \(X \models \phi[[\psi], [\chi]] \iff X \models \psi \) or \(X \models \chi \). \((*)\)

... ... there exists a truth function \(\sigma \) for \(\phi[[T], [T]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_1 \) or \(\Xi_2 \) in \(\mathcal{T}_\phi \), \(\sigma(k) \subsetneq 2^n \).

Now, as \(2^n \not\subseteq \sigma(k) \), we have that

\[
\sigma(k) \models \Theta_{2^n}, \text{ i.e. } \sigma(k) \models f(k)[[\Theta_{2^n}], [\Theta_{2^n}]].
\]

Hence, by Lemma (I), we obtain that \(\sigma \) is also a truth function for \(\phi[[\Theta_{2^n}], [\Theta_{2^n}]] \) over \(2^n \). Therefore \(2^n \models \phi[[\Theta_{2^n}], [\Theta_{2^n}]] \),

\[
\sigma(k_1) \models \Xi_1[[\Theta_{2^n}], [\Theta_{2^n}]] \quad \sigma(k_2) \models \Xi_1[[\Theta_{2^n}], [\Theta_{2^n}]] \quad \sigma(k_3) \models \Xi_2[[\Theta_{2^n}], [\Theta_{2^n}]]
\]
Proof (ctd). \(X \models \phi[\psi, \chi] \iff X \models \psi \) or \(X \models \chi \). \((\ast) \)

... ... there exists a truth function \(\sigma \) for \(\phi[\top, \top] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_1 \) or \(\Xi_2 \) in \(\mathcal{F}_\phi \), \(\sigma(k) \subsetneq 2^n \).

Now, as \(2^n \not\subseteq \sigma(k) \), we have that

\[
\sigma(k) \models \Theta_{2^n}, \text{ i.e. } \sigma(k) \models f(k)[[\Theta_{2^n}], [[\Theta_{2^n}]]].
\]

Hence, by Lemma (I), we obtain that \(\sigma \) is also a truth function for \(\phi[[\Theta_{2^n}], [[\Theta_{2^n}]]] \) over \(2^n \). Therefore \(2^n \models \phi[[\Theta_{2^n}], [[\Theta_{2^n}]]] \), thus by \((\ast)\), we must have that \(2^n \models \Theta_{2^n} \), which is impossible.

\[\square\]
Observation (II)

Let \(\phi[\Xi_1, \Xi_2] \) be an \(n \)-context of type \(\langle n, n \rangle \) such that in the syntax tree \(T_\phi \) there is a node \(k \) labeled with \(\Xi_1 \), which has no ancestor node with a label of the form \(\psi \otimes \chi \). Then \(\phi[\Xi_1, \Xi_2] \) does not define the intuitionistic implication \(\to \), namely

\[
[\phi[[\psi],[\chi]]] = [\psi \to \chi]
\]

fails for some \(\textbf{PD} \ n \)-formulas \(\psi, \chi \).

Proof. Let \(\psi := \bot \) and \(\chi := \bot \). Then

\[
2^n \models \bot \to \bot, \text{ i.e., } 2^n \in [\bot \to \bot].
\]

Suppose \(2^n \in [\phi[[\bot],[\bot]]] \) and \(\sigma \) is a truth function for \(\phi[[\bot],[\bot]] \) over \(2^n \). By assumption, \(\sigma(k) = 2^n \), which means that \(2^n \models \bot \); a contradiction.
Theorem

Intuitionistic implication \rightarrow is not uniformly definable in PD.

Proof. Suppose \rightarrow was uniformly definable in PD. Then there would exist an n-context $\phi[\Xi_1, \Xi_2]$ of type n^2 such that for all PD n-formulas ψ, χ, all n-team X,

$$X \models \phi[[\psi], [\chi]] \iff X \models \psi \rightarrow \chi.$$ \hfill (**)

Clearly, $2^n \models T \rightarrow T$, hence by (**) we have that

$$2^n \models \phi[[T], [T]],$$

thus by Observation (II) and Lemma (II), there exists a truth function σ for $\phi[[T], [T]]$ over 2^n such that for all nodes k labeled with Ξ_1 and all nodes m labeled with Ξ_2 in $\Sigma\phi$, it holds that $\sigma(k) \subsetneq 2^n$. Since

$$\sigma(k) \models T, \text{ i.e. } \sigma(k) \models f[[T], [\Theta_{2^n}]],$$

$$\sigma(m) \models \Theta_{2^n}, \text{ i.e. } \sigma(m) \models f(k)[[T], [\Theta_{2^n}]].$$

σ is also a truth function for $\phi[[T], [\Theta_{2^n}]]$ over 2^n. Therefore

$2^n \models \phi[[T], [\Theta_{2^n}]]$, thus by (**), we must have that $2^n \models T \rightarrow \Theta_{2^n}$, which is impossible.
Theorem

Intuitionistic implication \(\to \) is not uniformly definable in PD.

Proof. Suppose \(\to \) was uniformly definable in PD. Then there would exist an \(n \)-context \(\phi[\Xi_1, \Xi_2] \) of type \(n^2 \) such that for all PD \(n \)-formulas \(\psi, \chi \), all \(n \)-team \(X \),

\[
X \models \phi[[\psi], [\chi]] \iff X \models \psi \to \chi. \tag{**}
\]

Clearly, \(2^n \models \top \to \top \), hence by (**) we have that

\[
2^n \models \phi[[\top], [\top]],
\]

thus by Observation (II) and Lemma (II), there exists a truth function \(\sigma \) for \(\phi[[\top], [\top]] \) over \(2^n \) such that for all nodes \(k \) labeled with \(\Xi_1 \) and all nodes \(m \) labeled with \(\Xi_2 \) in \(\Sigma \phi \), it holds that \(\sigma(k) \not\subseteq 2^n \). Since

\[
\sigma(k) \models \top, \text{ i.e. } \sigma(k) \models f[[\top], [\Theta_{2^n}]],
\]

\[
\sigma(m) \models \Theta_{2^n}, \text{ i.e. } \sigma(m) \models f(k)[[\top], [\Theta_{2^n}]].
\]

\(\sigma \) is also a truth function for \(\phi[[\top], [\Theta_{2^n}]] \) over \(2^n \). Therefore \(2^n \models \phi[[\top], [\Theta_{2^n}]] \), thus by (**), we must have that \(2^n \models \top \to \Theta_{2^n} \), which is impossible.