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Abstract

The question, whether second order logic is a better foundation for
mathematics than set theory, is addressed. The main difference between
second order logic and set theory is that set theory builds up a transfinite
cumulative hierarchy while second order logic stays within one application
of the power sets. It is argued that in many ways this difference is illu-
sory. More importantly, it is argued that the often stated difference, that
second order logic has categorical characterizations of relevant mathemat-
ical structures, while set theory has non-standard models, amounts to no
difference at all. Second order logic and set theory permit quite similar
categoricity results on one hand, and similar non-standard models on the
other hand.

1 Introduction

The distinction between first and second order logic did not arise as a serious
matter before model theory was developed in the early part of the twentieth
century. The current view, supported by model theory, is that first and second
order logic are about as far from each other as it is possible to imagine. On
the other hand, in a proof theoretic account first and second order logic behave
very similarly, even though the latter is in general somewhat stronger than the
former. Thus it seems necessary that in any discussion on second order logic and
first order set theory one must be very clear whether the framework is model
theoretic or proof theoretic. However, in a foundational discussion we should be
able to make judgements that are free from frameworks. A framework is just a
tool.
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When second order logic is thought of as a foundation of mathematics, it
is nowadays taken in the model theoretic sense with reference to its power to
characterize classical mathematical structures up to isomorphism and thereby
capture our intuition in an exact way. This is often contrasted to the situation
with the model theory of set theory, where the first order Zermelo-Fraenkel
axioms have countable models and models with non-standard integers, contrary
to our intuition about the set theoretic universe. So the huge distance between
the model theory of second order logic and the model theory of first order logic
manifests itself in discussions about foundations of mathematics, with second
order logic appearing to emerge as the logic which more accurately captures the
intended meaning of mathematical concepts.

I will argue below that despite their great apparent differences, second order
logic and first order set theory turn out to be virtually indistinguishable as far
as capturing mathematical concepts is concerned.

Another difference between second order logic and set theory is that the
latter builds up a transfinite power-set hierarchy while the former settles with
one layer of power-sets. This is a genuine difference which, unlike claims of cat-
egoricity, cannot be explained away. However, if second order logic is extended
to third and higher order logics and eventually to type theory, this difference to
set theory becomes respectively smaller. Still type theory maintains an explicit
typing of objects while set theory is type-free. On the other hand, every set
has a rank, an ordinal, which more or less works like a type. So the difference
between type theory and set theory is really only in that set theory has an in-
ternal mechanism for generating higher and higher types while in type theory
this is part of the set-up of the language. From the point of view of foundational
questions this difference seems like a minute one.

2 Second order logic

The approach of second order logic to the foundations of mathematics is that
mathematical propositions have the form

A |= φ, (1)

where A is a structure, typically one of the classical structures such as integers
or reals, and φ is a mathematical statement written in second order logic. This
seems at least at first sight like an excellent approach since almost any statement
in mathematics can be succinctly written as a second order property of one of the
classical structures. An example is provided by Fermat’s Last theorem (where
exponentiation is a defined symbol):

A |= ∀x > 0∀y > 0∀z > 0∀n > 2¬(xn + yn = zn), (2)

where A = (N,+, ·, <).
If A is one of the structures, such as (N,+, ·, <) or (R,+, ·, <,N), for which

there is a second order sentence θA such that ∀B(B |= θA ↔ B ∼= A), then (1)
can be expressed as a second order semantic logical truth
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|= θA → φ. (3)

As was known already in the thirties, the second order semantic logical con-
sequence relation |= ψ is not axiomatizable (i.e. not r.e.). The Levy-hierarchy
[4] of set theory is one possible way to measure how far |= ψ is from being
axiomatizable. As it turns out, |= ψ is Π2-complete —and thus a fortiori not Σ2

—in set theory ([7]). In other words, the only way to become convinced of |= ψ
for a given ψ requires, in the unavoidable worst case, going through the entire
set theoretical universe in search of evidence. To see what this means, suppose
|= ψ is written as ∀x∃yΦ(x, y), where Φ(x, y) is Σ0. Then to be convinced of
the truth of |= ψ one has to go through every set x and then look for y with
Φ(x, y).

The powerful Levy Reflection Theorem [4] says that if Ψ(x, y) is Σ0, κ > 0
and a1, ..., an ∈ H(κ)1 such that for some b we have Ψ(b, a1, ..., an) , then
there is b ∈ H(κ) such that Φ(b, a1, ..., an). That means that if we are given
a1, ..., an ∈ H(κ) and we want to find b such that Φ(b, a1, ..., an) we need only
look for such a b in H(κ), rather than in the vast universe V of set theory.

So going back to |= ψ and its Π2-representation ∀x∃yΦ(x, y) we first take an
arbitrary x in the universe of sets and then search for y. The message of Levy’s
Reflection Principle is that we only need to look for y in the “neighborhood”
of x (in the sense that if x ∈ H(κ), κ > ω, then we only need to look for y in
H(κ)). So the good news is that we only need to hang around x, but the bad
news is that x may be anywhere in the universe V of sets. For example, there
is no a priori bound on the hereditary cardinality of x.

So the difference to |= φ where φ is first order is great for in this case we
only need to look for a natural number that codes a proof of φ. The difference
is also great to |= φ for φ ∈ Lω1ω, where we only need to look for a real number
that codes a proof of φ. Likewise with |= φ for φ ∈ Lω1ω1 , where we only need2

to look for sets of reals that code possible models of φ. No matter how badly
behaving Lω1ω1 otherwise is3, at least validity in Lω1ω1 can be checked without
going further afield than sets of reals. Not so for second order logic.

It is true, to check |= φ for second order φ it is sufficient to check sets of
hereditary cardinality less than the first supercompact cardinal (and nothing less
will do) [5]. This is however a far cry from going through all natural numbers,
going through all reals, or going through all sets of reals.

What does “going through” mean, for surely we cannot really “go through”
all natural numbers, let alone all reals, or all sets of reals. It is all a question of
how to deal with abstract objects, something where logic is supposed to help us.
The great thing about natural numbers is that we can “look” at them. We can
take natural numbers one by one and check what they are like. We can even
imagine ourselves looking at a real number and wondering whether it codes a

1The set of sets that have hereditary cardinality < κ i.e. are included in a transitive set of
cardinality < κ.

2Thanks to the Löwenheim-Skolem Theorem of Lω1ω1
3For example, its Hanf number can be bigger than the first measurable cardinal [3].
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proof of something or not. But when we come to sets of real numbers there is
phase transition to something infinitely more complex. We leave the world of
concrete or almost concrete objects and enter the world of abstract objects.

The situation with (3) is a little simpler than with (1). In (3) one only has
to search for evidence in the power-set of A. If A is continuum-sized, then we
have to search through sets of reals. What was said above about going through
all sets of reals applies. It is abstract thinking.

The main result of Gödel’s doctoral thesis was the Completeness Theorem
for first order logic which tells us that the semantic logical consequence relation
of first order logic is, in contrast to second order logic, axiomatizable in the way
suggested by Hilbert and Bernays. Thus the combination of Gödel’s Complete-
ness Theorem and his Incompleteness Theorem established the sharp difference
between the semantics of first and second order logics. In first order logic truth
in all models can be reduced to the existence of a finite proof. In second order
logic truth in all models cannot be reduced to the existence of a finite proof in
any sensible way.

If (1) is the general form of a mathematical proposition, then what is the
general form of a proof of (1)? Logicians have a formal concept of a proof, but
we can ask more generally what is the basic form or nature of something we
can assert that would make asserting (1) legitimate? An obvious answer would
seem to be that if we have already grounds to assert

A |= ψ, (4)

and we moreover know that every model of ψ is a model of φ, i.e.

|= ψ → φ, (5)

then we can assert by the logical rule of Modus Ponens that (1) holds. But we
just observed that (5) is an even more complex notion than (1). In view of our
discussion above there are no rules that completely explain (5) that would be
easier to present and use than (1). It is rather the opposite: we can prove in
set theory that one cannot be convinced of (5) without going through the entire
universe of sets (or at least up to a supercompact cardinal), while one can be
convinced of (1) by “just” going through all subsets of A.

Of course there are some rules that govern (5), like

|= φ(P )→ ∃Xφ(X)

and are used all the time even if it is known that they cannot produce all cases
of (5).

There are two stronger versions of (3), namely

ZFC ` ∀B(B |= θA → B |= φ) (6)

and
CA ` θA → φ, (7)
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where CA is the usual axiomatization of second order logic i.e. the comprehen-
sion schema and the axiom of choice. These two conditions are Σ0

1-properties of
φ. Even if one wants to assert the weaker (3) it seems reasonable to give (6) or
(7) as the justification. Indeed, it is the habit of mathematicians to aim at the
strongest statements, whenever they seem within reach. Also, one can justify
(6) or (7) by giving a proof, which is a finite object, typically even surveyable,
while justifying (3) without recourse to (6) or (7) involves dealing directly with
infinite objects.

One may ask, whether indeed (3) is ever asserted with certainty without the
certainty arising from knowing (6) or (7). Be this as it may, there is nothing
wrong in believing (3) on the basis of (6) or (7), and the recourse to (6) or (7)
does not in any way render (3) meaningless.

If we compare (6) and (7), we may observe that while (7) may be harder to
prove, (6) certainly gives a shorter proof. In fact, there is no recursive function
h such that the following holds: If φ is a second order sentence and there is a
proof in ZFC of ∀M(M |= φ) with n lines, then there is a proof of φ of ≤ h(n)
lines from CA.4

I have called (6) and (7) stronger forms of (3) because I take it for granted
that ZFC and CA are true axioms. It is not the main topic of this paper to
investigate how much ZFC and CA can be weakened in this or that special
instance of (6) and (7), as such considerations do not differentiate second order
logic and set theory from each other in any essential way.

It is not easy to give an example of a φ such that (1) would not hold because
of (6) or (7), especially since we may simply replace ZFC and CA with stronger
theories if needed, e.g. if φ is Con(ZFC) or the Paris-Harrington sentence.
When one moves to topology and measure theory more examples start to emerge.
Let us consider the statement φ0 stating that the Lebesgue measure has an
extension to a total σ-additive measure on the reals. This is a second order
statement about the structure A0 = (P(R),∈,R,+.·, <,N) (or alternatively, a
third order statement about (R,+.·, <,N)). No answer is known for the question
A0 |= φ0 nor to the question A0 |= ¬φ0, although trivially

A0 |= φ0 or A0 |= ¬φ0. (8)

This is an example of the non-classical nature of the logic of correct judgements.
No generally accepted version CA∗ of axiomatization of second order logic

is known which would give
CA∗ ` θA0 → φ, (9)

when φ = φ0 or φ = ¬φ0. Still the respective version of (3) is true either for
φ = φ0 or φ = ¬φ0. So the weaker claim (3) holds one way or the other, but
at the moment we cannot strengthen this observation to (9) one way or the
other. All we know is that CA∗ cannot be the usual CA, since φ0 violates CH
but is true in a model of CA constructed from a measurable cardinal. To make
progress on the question of the truth of A0 |= φ0 one would have to study true
extensions CA∗ of CA. We have the implications

4Joint work with Moshe Vardi.
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CA ` θA0 → φ ⇒ CA∗ ` θA0 → φ ⇒ |= θA0 → φ. (10)

The current situation is roughly speaking that for trivial reasons the right-
most implicant holds for either φ0 or its negation, and for totally non-trivial
reasons the leftmost implicant holds for neither. A lot of effort is put into try-
ing to establish the middle implicant for either φ0 or its negation, with the right
choice of CA∗. The fact that the rightmost implicant holds for either φ0 or its
negation is, of course, of little use unless we know which case holds.

An obvious complaint about (7) in comparison to the weaker (1) is that (1)
merely asserts that φ should hold in the standard model, while (7) seems to
assert that φ holds in the whole pack of “non-standard” models in addition to
the “standard” model A. While every student of logic knows how to prove this,
there is a more subtle sense in which this is not really so. To see this, let us
consider A = (N,+, ·). Let us consider two versions of φA, one, let us call it φ1

A,
in the vocabulary {+1, ·1} and the other, let us call it φ2

A, in the vocabulary
{+2, ·2}. If CA denotes the axiomatization of second order logic in a vocabulary
that includes both {+1, ·1} and {+2, ·2}, then

CA ` (φ1
A ∧ φ2

A)→ Isom1,2, (11)

where Isom1,2 denotes the statement of second order logic stating that there is
a bijection f such that for all x, y: f(x +1 y) = f(x) +2 f(y) and f(x ·1 y) =
f(x) ·2 f(y). So in this subtle sense (7) really asserts the truth of φ in one and
only one model, namely the standard model. ([1], [6])

There are good reasons to believe that the situation described above is not
characteristic of arithmetic but applies equally to other structures that can be
categorically characterized in second order logic. Curiously, (2) is an example
where we do not know at the moment for sure what the right CA∗ would be,
although it is generally believed that CA will suffice.

Naturally, CA itself has non-standard models but they should not be the
concern in connection with (7) because we are not studying CA but the structure
A. In fact the whole concept of a model of CA is out of place here as CA is used
as a medium of evidence for (3). We can convince ourselves of the correctness of
the evidence by simply looking at the proof given in CA very carefully. There
is no infinitistic element in this.

3 Set theory

The approach of set theory to the foundations of mathematics is that mathe-
matical propositions have the form

Φ(a), (12)

where Φ(x) is a first order formula with variables ranging over the universe of
sets, and a is a set. If we compare (1) and (12), we observe that the former is
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restricted to one presumably rather limited structure A while (12) refers to the
entire universe. This is one often quoted difference between second order logic
and set theory. Second order logic takes one structure at a time and asserts
second order properties about that structure, while set theory tries to govern
the whole universe at a time. This observation requires two qualifications.

First, while it is true that (12) refers to the entire universe, typical math-
ematical propositions are really statements about some Vα such that a ∈ Vα.
It requires some effort to find a mathematical theorem outside the realm of set
theory which could not be written as a set theoretical fact about Vω+ω. Borel
Determinacy is one such ([2]). But what about Vω1? In fact, (1) can be easily
written in set theory as a first order property of Vα+1 as soon as A ∈ Vα. So
we can reformulate the set theoretical approach to mathematical propositions
as follows: they are of the form

Vα |= Φ, (13)

where Φ is a first order sentence and α is some large enough ordinal; in most
areas of mathematics we can take α ≤ ω + ω. This demonstrates that it is not
essential in (12) that the quantifiers range over the entire universe, and there
is no essential difference to (1). It is a different matter if we study set theory
itself. Then it is essential that (12) is not limited to any portion of the universe.
Still, if we restrict (12) to formulas Φ(x) of quantifier-rank ≤ n for a fixed n
then there is a closed unbounded class of ordinals α such that (12) is equivalent
to Vα |= Φ(a).

Let us now turn to the question when can we assert justifiably (12)? The
complexity of (12) is of course beyond description, as (12) is undefinable in set
theory. Even the stronger

∀α(Vα |= Φ) (14)

is a Π2-complete property of (the Gödel number of) Φ. Just as with (1) there
is a different stronger formulation of (12):

ZFC ` Φ(a), (15)

where we assume that a is a definable term. As in our above discussion on truth
and provability in second order logic we can view (15) as potentially surveyable
evidence for (12) without drawing the conclusion that (15) is the meaning of
(12). The most famous example of a difference between (12) and (15) is the
Continuum Hypothesis CH. One of the intriguing problems of set theory is
to find a true extension ZFC∗ of ZFC which decides CH. For any extension
ZFC∗ of ZFC we have the analogue of (10):

ZFC ` Φ ⇒ ZFC∗ ` Φ ⇒ Φ. (16)

Here Φ can be any mathematical statement. For both CH and ¬CH we know
that the leftmost implicant is false. The rightmost implicant holds for CH
or ¬CH but we do not know for which. Kreisel seems to be the first to pay
attention to this curious situation.
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Discussing implications like (10) and (16) does not mean that we are any-
where near finding CA∗ or ZFC∗, or even that it is unproblematic to suggest
that CA∗ or ZFC∗ can be found. The point is that the situation is entirely
similar in second order logic and in set theory. In both cases we equally far or
equally close to a solution.

All the usual mathematical structures can be characterized up to isomor-
phism in set theory by appeal to their second order characterization but letting
the second order variables range over sets that are subsets of the structure to
be characterized.

The only difference to the approach of second order logic is that in set
theory these structures are indeed explicitly defined while in second order logic
they are merely described. In this respect second order logic is closer to the
standard mathematical practice of not paying attention to what the “objects”
e.g. complex numbers really are, as long as they obey the right rules. However,
it is important also in second order logic to prove the existence of the structure
to be characterized. After the existence has been proved, the object can be
forgotten. In set theory the existence is proved by defining the object and
showing that the definition is legitimate. When we move on to more counter-
intuitive structures this difference disappears. Take for example the structure

(P(ω), <) (17)

where < is a well-order of order-type 2ℵ0 . There is a second order sentence θ
such that (17) is the only model of θ, up to isomorphism. Neither second order
logic nor set theory can define such a well-ordering.

If set theory is formalized with two ∈-relations, say ∈1 and ∈2, and the ZFC
axioms are adopted in the common vocabulary {∈1,∈2}, then the equation

F (x) = {′F (y) : y ∈′ x}′ (18)

defines a class function F which is an isomorphism between the ∈1-sets and the
∈2-sets. In this sense set theory, like second order logic, has internal categoricity.

4 Foundations of mathematics

Which is the right way to do mathematics: second order logic or set theory?
Let us leave aside the question whether the higher ordinals that exist in set
theory are really needed. The point is that set theory is just a “taller” version
of second order logic, and if one does not need (or like) the tallness, then one
can replace set theory by second (or higher) order logic. However, this does not
yield more categoricity, for both second order logic and set theory are equally
“internally categorical”. If we look at second order logic and set theory from
the outside we enter metamathematics. Then we can build formalizations of the
semantics of either second order logic or set theory and prove their categoricity
in “full” models as well as their non-categoricity in “Henkin” models.

But is there an “outside” position for the language of mathematics? If there
is a framework where one can position oneself outside mathematics, what is
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that framework? If we are going to prove metamathematical results in that
framework, the framework has to involve a lot of mathematics itself. It would
seem natural to identify that supposedly outside framework with mathematics
itself and construe the metamathematics in some other way. An alternative
approach to metamathematics is that in our language of mathematics we for-
malize the various languages that we are interested in, including their semantics.
Then we use our mathematics to prove illuminating (completeness, incomplete-
ness, categoricity, non-categoricity, etc) results about those formal languages
and about their semantics. These results tell something about our “real” lan-
guage of mathematics to the extent that our formalizations reflect this “real”
language. However, properties of this reflection can only be observed, never
proved.

The “real” language is not a mathematical concept, even less its semantics.
Only the formal languages and their semantics are mathematically defined and
can be subjected to mathematical proofs.

There is no outside point of view in foundations of mathematics. Formaliza-
tion does not take us outside but rather inside. Formalization does not give a
more general view but a more restricted view. Therefore foundational conclu-
sions made from mathematical results concerning formal systems have always
an element of doubt. Still formalization endowed with conceptual analysis is a
correct way to deepen our understanding of foundations of mathematics, and
has been highly successful in explaining why some mathematical questions have
turned out so difficult to solve and why some cannot be solved with current
methods.
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