Outline

1. Background
2. Formal Semantics
3. Quantifiers
4. Boolean Operations on Quantifiers
5. The Square of Opposition
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.

GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.

GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).

The idea was to define logics that extended the expressive power of first-order logic (FO) in precise ways.
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.

GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).

The idea was to define logics that extended the expressive power of first-order logic (FO) in precise ways.

GQs also exist in simple type theory (Frege, Russell, Church), as objects of type $\langle \langle e, t \rangle, t \rangle$, $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$, etc.
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.

GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).

The idea was to define logics that extended the expressive power of first-order logic (FO) in precise ways.

GQs also exist in simple type theory (Frege, Russell, Church), as objects of type $\langle\langle e, t \rangle, t \rangle, \langle\langle e, t \rangle, \langle\langle e, t \rangle, t \rangle \rangle$, etc.

When some linguists started using semantic objects of higher types (Montague, Lewis), it gradually became clear that GQs occur frequently in natural languages: Barwise and Cooper (1981) and others.
Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.

GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).

The idea was to define logics that extended the expressive power of first-order logic (FO) in precise ways.

GQs also exist in simple type theory (Frege, Russell, Church), as objects of type \(\langle \langle e, t \rangle, t \rangle, \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle, \) etc.

When some linguists started using semantic objects of higher types (Montague, Lewis), it gradually became clear that GQs occur frequently in natural languages: Barwise and Cooper (1981) and others.

So a rather well studied logical tool was made available for the study of language, with the prospect of increased descriptive adequacy, and (sometimes) explanatory value.
Background

- Generalized Quantifier (GQ) theory is one of the most successful examples of the use of logic in the study of language.
- GQs were introduced for mathematical-logical reasons by Mostowski (1957) and Lindström (1966) (in fact already by Frege in 1879).
- The idea was to define logics that extended the expressive power of first-order logic (FO) in precise ways.
- GQs also exist in simple type theory (Frege, Russell, Church), as objects of type \(\langle \langle e, t \rangle, t \rangle, \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle \), etc.
- When some linguists started using semantic objects of higher types (Montague, Lewis), it gradually became clear that GQs occur frequently in natural languages: Barwise and Cooper (1981) and others.
- So a rather well studied logical tool was made available for the study of language, with the prospect of increased descriptive adequacy, and (sometimes) explanatory value.
- Conversely, linguistic issues led to new questions about quantifiers, questions that logic (sometimes) could answer.
The idea for this course is to describe some highlights of this story.
The idea for this course is to describe some **highlights** of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.
The idea for this course is to describe some **highlights** of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.

They may also tell us something about the relations between logic and language.

Plan

- Lecture 1: The idea of formal semantics, with GQ theory as an example
- Lecture 2: Basic properties of GQs
- Lecture 3: Monotonicity
- Lecture 4: Possessive quantification
- Lecture 5: Some logical matters

Not included are computational aspects: Robin Cooper's course next week.

Prerequisites: Basic FO, some set-theoretic notation. When in doubt: ASK!
The idea for this course is to describe some **highlights** of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.

They may also tell us something about the relations between logic and language.

NB If the GQ *most* is definable in FO is a **mathematical** question. If English, or Chinese, has the quantifier *most* is an **empirical** question.
The idea for this course is to describe some highlights of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.

They may also tell us something about the relations between logic and language.

NB If the GQ *most* is definable in FO is a mathematical question. If English, or Chinese, has the quantifier *most* is an empirical question.

Here is the plan:

Lecture 1 The idea of formal semantics, with GQ theory as an example
Lecture 2 Basic properties of GQs
Lecture 3 Monotonicity
Lecture 4 Possessive quantification
Lecture 5 Some logical matters
The idea for this course is to describe some highlights of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.

They may also tell us something about the relations between logic and language.

NB If the GQ most is definable in FO is a mathematical question. If English, or Chinese, has the quantifier most is an empirical question.

Here is the plan:

Lecture 1 The idea of formal semantics, with GQ theory as an example
Lecture 2 Basic properties of GQs
Lecture 3 Monotonicity
Lecture 4 Possessive quantification
Lecture 5 Some logical matters

Not included are computational aspects: Robin Cooper’s course next week.
The idea for this course is to describe some highlights of this story.

These highlights are interesting in themselves, for logical reasons, or linguistics reasons, or both.

They may also tell us something about the relations between logic and language.

NB If the GQ *most* is definable in FO is a mathematical question. If English, or Chinese, has the quantifier *most* is an empirical question.

Here is the plan:

Lecture 1 The idea of formal semantics, with GQ theory as an example
Lecture 2 Basic properties of GQs
Lecture 3 Monotonicity
Lecture 4 Possessive quantification
Lecture 5 Some logical matters

Not included are computational aspects: Robin Cooper’s course next week.

Prerequisites: Basic FO, some set-theoretic notation. When in doubt: ASK!
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is **model-theoretic**: assigning **interpretations** to syntactic expressions.

The syntactic expressions should be generated by a formal system or **grammar**, and the meaning assignment should be **compositional**.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

The syntactic expressions should be generated by a formal system or grammar, and the meaning assignment should be compositional.

A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

The syntactic expressions should generated by a formal system or grammar, and the meaning assignment should be compositional.

A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).

Another contrast is with earlier work in generative semantics: thinking of semantics as finding a suitable level of representation (usually in FO).
Formal Semantics

- The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

- Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

- The syntactic expressions should generated by a formal system or grammar, and the meaning assignment should be compositional.

- A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).

- Another contrast is with earlier work in generative semantics: thinking of semantics as finding a suitable level of representation (usually in FO).

- In (model-theoretic) formal semantics meaning is closely tied to reference: relations between language and the world.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

The syntactic expressions should generated by a formal system or grammar, and the meaning assignment should be compositional.

A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).

Another contrast is with earlier work in generative semantics: thinking of semantics as finding a suitable level of representation (usually in FO).

In (model-theoretic) formal semantics meaning is closely tied to reference: relations between language and the world.

Intensions can be modelled by taking account of possible worlds.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

The syntactic expressions should be generated by a formal system or grammar, and the meaning assignment should be compositional.

A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).

Another contrast is with earlier work in generative semantics: thinking of semantics as finding a suitable level of representation (usually in FO).

In (model-theoretic) formal semantics meaning is closely tied to reference: relations between language and the world.

Intensions can be modelled by taking account of possible worlds.

(Some) pragmatics can be modelled by adding contexts to the machinery.
The basic idea in formal semantics is to use mathematical tools for describing linguistic meaning.

Usually, the notion of meaning is model-theoretic: assigning interpretations to syntactic expressions.

The syntactic expressions should be generated by a formal system or grammar, and the meaning assignment should be compositional.

A contrast: ‘psychologistic’ semantics, meanings as mental (‘in the head’).

Another contrast is with earlier work in generative semantics: thinking of semantics as finding a suitable level of representation (usually in FO).

In (model-theoretic) formal semantics meaning is closely tied to reference: relations between language and the world.

Intensions can be modelled by taking account of possible worlds.

(Some) pragmatics can be modelled by adding contexts to the machinery.

In basic GQ theory we ignore intensions and pragmatics: the theory is extensional.
The sentence

(1) Some students smoke

has the obvious phrase structure

\[
S \\
NP \rightarrow \text{Det} \rightarrow \text{some} \rightarrow \text{N} \rightarrow \text{student} \\
VP \rightarrow \text{smokes}
\]
The sentence

(1) Some students smoke

has the obvious phrase structure

\[
S \quad \begin{array}{c}
\text{NP} \\
\text{Det} \quad \text{N}
\end{array} \quad \begin{array}{c}
\text{VP} \\
\text{smokes}
\end{array}
\]

As everyone knows, in FO this becomes

(2) \(\exists x (\text{student}(x) \land \text{smoke}(x)) \)

This is very simple, but it doesn’t respect the constituent structure, and it adds a variable and a sentence connective.
The sentence
(1) Some students smoke
has the obvious phrase structure

As everyone knows, in FO this becomes
(2) $\exists x (\text{student}(x) \land \text{smoke}(x))$
This is very simple, but it doesn’t respect the constituent structure, and it adds a variable and a sentence connective.

Instead of concluding (Frege, Russell) that (2) is the ‘true logical form’ of (2), we may try to use a more sophisticated logic.
The sentence

(1) Some students smoke

has the obvious phrase structure

As everyone knows, in FO this becomes

(2) $\exists x (\text{student}(x) \land \text{smoke}(x))$

This is very simple, but it doesn’t respect the constituent structure, and it adds a variable and a sentence connective.

Instead of concluding (Frege, Russell) that (2) is the ‘true logical form’ of (2), we may try to use a more sophisticated logic.

The extension of student and smoke are sets (just as in FO). But what is the extension of every student, and of every?
Medieval logicians tried to deal with this, but they didn’t have appropriate tools.
Medieval logicians tried to deal with this, but they didn’t have appropriate tools.

For example, if every student denotes the set of all students, what would no students denote, and how would that denotation differ from the denotation of no dogs?
Medieval logicians tried to deal with this, but they didn’t have appropriate tools.

For example, if every student denotes the set of all students, what would no students denote, and how would that denotation differ from the denotation of no dogs?

In fact, one can prove (PW ch. 1.4) that no semantics assigning sets to NPs like every student can be adequate.
Quantifiers

Illustration, cont.

- Medieval logicians tried to deal with this, but they didn’t have appropriate tools.

- For example, if every student denotes the set of all students, what would no students denote, and how would that denotation differ from the denotation of no dogs?

- In fact, one can prove (PW ch. 1.4) that no semantics assigning sets to NPs like every student can be adequate.

- There is another reason: Even if

 \((3) \) Some students smoke

 \((4) \exists x (\text{student}(x) \land \text{smoke}(x)) \)

 have the same truth conditions, one can prove (PW ch. 14) that no similar formalization is possible for the very similar sentence

 \((5) \) Most students smoke
Medieval logicians tried to deal with this, but they didn’t have appropriate tools.

For example, if every student denotes the set of all students, what would no students denote, and how would that denotation differ from the denotation of no dogs?

In fact, one can prove (PW ch. 1.4) that no semantics assigning sets to NPs like every student can be adequate.

There is another reason: Even if

\((3) \) Some students smoke
\((4) \exists x (\text{student}(x) \land \text{smoke}(x)) \)

have the same truth conditions, one can prove (PW ch. 14) that no similar formalization is possible for the very similar sentence

\((5) \) Most students smoke

So we had better try another route.
Illustration, cont.

- The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.
Illustration, cont.

- The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.

- Indeed this is just the old Aristotelian quantifier every, i.e. set inclusion:

 Every A is B \iff $\text{every}(A, B) \iff A \subseteq B$

 No A is B \iff $\text{no}(A, B) \iff A \cap B = \emptyset$

NB Actually Aristotle took every to have existential import ($A \neq \emptyset \land A \subseteq B$); we ignore that for now.

One thing is still missing (and often forgotten!): (6) Most students smoke may be true at Tsinghua University but false at Sun Yat-sen University. But most means the same in both places! So we need a parameter for the universe M: on each M, every M is the subset relation, most M is the majority relation, etc., between subsets of M.

The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.

Indeed this is just the old Aristotelian quantifier every, i.e. set inclusion:

Every A is $B \iff \text{every}(A, B) \iff A \subseteq B$

No A is $B \iff \text{no}(A, B) \iff A \cap B = \emptyset$

NB Actually Aristotle took every to have existential import $(A \neq \emptyset \land A \subseteq B)$; we ignore that for now.
The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.

Indeed this is just the old Aristotelian quantifier every, i.e. set inclusion:

\[
\text{Every } A \text{ is } B \iff \text{every}(A, B) \iff A \subseteq B
\]
\[
\text{No } A \text{ is } B \iff \text{no}(A, B) \iff A \cap B = \emptyset
\]

NB Actually Aristotle took every to have existential import \((A \neq \emptyset \land A \subseteq B)\); we ignore that for now.

One thing is still missing (and often forgotten!):

(6) Most students smoke

may be true at Tsinghua University but false at Sun Yat-sen University.
Illustration, cont.

- The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.

- Indeed this is just the old Aristotelian quantifier every, i.e. set inclusion:

 Every A is $B \iff$ every$(A, B) \iff A \subseteq B$

 No A is $B \iff$ no$(A, B) \iff A \cap B = \emptyset$

- NB Actually Aristotle took every to have existential import ($A \neq \emptyset \land A \subseteq B$); we ignore that for now.

- One thing is still missing (and often forgotten!):

 (6) Most students smoke

 may be true at Tsinghua University but false at Sun Yat-sen University.

- But most means the same in both places!
Illustration, cont.

- The basic idea is simple: since student and smoke denote sets (of individuals), every should denote a relation between sets, i.e. a second-order relation.

- Indeed this is just the old Aristotelian quantifier every, i.e. set inclusion:

 Every A is B ⇔ every(A, B) ⇔ $A \subseteq B$

 No A is B ⇔ no(A, B) ⇔ $A \cap B = \emptyset$

- **NB** Actually Aristotle took every to have existential import ($A \neq \emptyset \land A \subseteq B$); we ignore that for now.

- One thing is still missing (and often forgotten!):

 (6) Most students smoke

 may be true at Tsinghua University but false at Sun Yat-sen University.

- But most means the same in both places!

- So we need a parameter for the universe M: on each M, every$_M$ is the subset relation, most$_M$ is the majority relation, etc., between subsets of M.

Thus, we shall say that the global generalized quantifier *every* associates with each M the local generalized quantifier every_M, which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have type $\langle 1, 1 \rangle$. The word "generalized" is usually dropped. We take words like *every*, *no*, *most* (in English) to denote global quantifiers. We still haven't said what NPs (*most students*, etc.) should denote. Looking at the tree for "Most students smoke" provides the clue: this denotation should result from combining the type $\langle 1, 1 \rangle$ quantifier *most* with the set of students. The result should in turn combine with the set of smokers to give something that can be true or false. We can obtain this by fixing the first argument of *most* to student. The result is a type $\langle 1 \rangle$ quantifier, which takes one set argument. In general, a global type $\langle 1 \rangle$ quantifier Q associates with each M a local type $\langle 1 \rangle$ quantifier Q_M: a set of subsets of M.

8 of 20
Thus, we shall say that the global generalized quantifier *every* associates with each M the local generalized quantifier every_M, which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have type $\langle 1, 1 \rangle$.

Illustration, end

- Thus, we shall say that the global generalized quantifier *every* associates with each M the local generalized quantifier every_M, which is a second-order relation over M.

- Similarly for *no*, *most*, etc. We say that these quantifiers have type $\langle 1, 1 \rangle$.

- The word “generalized” is usually dropped.
Thus, we shall say that the global generalized quantifier *every* associates with each M the local generalized quantifier \(\text{every}_M \), which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have type \(\langle 1, 1 \rangle \).

The word “generalized” is usually dropped.

We take words like *every*, *no*, *most* (in English) to denote global quantifiers.
Thus, we shall say that the global generalized quantifier *every* associates with each M the local generalized quantifier every_M, which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have type $\langle 1, 1 \rangle$.

The word “generalized” is usually dropped.

We take words like *every*, *no*, *most* (in English) to denote global quantifiers.

We still haven’t said what NPs (most students, etc.) should denote.
Thus, we shall say that the **global generalized quantifier** *every* associates with each M the **local generalized quantifier** every_M, which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have type $\langle 1, 1 \rangle$.

The word “generalized” is usually dropped.

We take words like *every*, *no*, *most* (in English) to denote global quantifiers.

We still haven’t said what NPs (*most students*, etc.) should denote.

Looking at the tree for “Most students smoke” provides the clue: this denotation should result from combining the type $\langle 1, 1 \rangle$ quantifier *most* with the set of students. The result should in turn combine with the set of smokers to give something that can be true or false.
Thus, we shall say that the global generalized quantifier \textit{every} associates with each \(M \) the local generalized quantifier \textit{every}_M, which is a second-order relation over \(M \).

Similarly for \textit{no}, \textit{most}, etc. We say that these quantifiers have type \(\langle 1, 1 \rangle \).

The word “generalized” is usually dropped.

We take words like \textit{every}, \textit{no}, \textit{most} (in English) to denote global quantifiers.

We still haven’t said what NPs (\textit{most students}, etc.) should denote.

Looking at the tree for “Most students smoke” provides the clue: this denotation should result from combining the type \(\langle 1, 1 \rangle \) quantifier \textit{most} with the set of students. The result should in turn combine with the set of smokers to give something that can be true or false.

We can obtain this by \textbf{fixing} the first argument of \textit{most} to \textit{student}. The result is a type \(\langle 1 \rangle \) quantifier, which takes one set argument.
Thus, we shall say that the **global generalized quantifier** *every* associates with each M the **local generalized quantifier** every_M, which is a second-order relation over M.

Similarly for *no*, *most*, etc. We say that these quantifiers have **type** $\langle 1, 1 \rangle$.

The word “generalized” is usually dropped.

We take words like *every*, *no*, *most* (in English) to **denote** global quantifiers.

We still haven’t said what NPs (most students, etc.) should denote.

Looking at the tree for “Most students smoke” provides the clue: this denotation should result from combining the type $\langle 1, 1 \rangle$ quantifier *most* with the set of students. The result should in turn combine with the set of smokers to give something that can be true or false.

We can obtain this by **fixing** the first argument of *most* to *student*. The result is a type $\langle 1 \rangle$ quantifier, which takes **one** set argument.

In general, a **global type** $\langle 1 \rangle$ quantifier Q associates with each M a local type $\langle 1 \rangle$ quantifier Q_M: a set of subsets of M.

Illustration, end
Quantifiers

By analyzing some simple sentences we have almost arrived a general notion of quantifier.
By analyzing some simple sentences we have almost arrived a general notion of quantifier.

There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.
Quantifiers

- By analyzing some simple sentences we have almost arrived a general notion of quantifier.
- There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.
- The type notation adapts to this: type $\langle n_1, \ldots, n_k \rangle$ stands for a sequence of relations R_1, \ldots, R_k (over some M) such that R_i is n_i-ary.
By analyzing some simple sentences we have almost arrived a general notion of quantifier.

There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.

The type notation adapts to this: type $\langle n_1, \ldots, n_k \rangle$ stands for a sequence of relations R_1, \ldots, R_k (over some M) such that R_i is n_i-ary.

Thus:

Definition

A global type $\langle n_1, \ldots, n_k \rangle$ quantifier Q associates with each M a local type $\langle n_1, \ldots, n_k \rangle$ quantifier Q_M: a k-ary relation between relations (of the corresponding arities) over M.
Quantifiers

- By analyzing some simple sentences we have almost arrived a general notion of quantifier.
- There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.
- The type notation adapts to this: type \(\langle n_1, \ldots, n_k \rangle \) stands for a sequence of relations \(R_1, \ldots, R_k \) (over some \(M \)) such that \(R_i \) is \(n_i \)-ary.
- Thus:

Definition

A global type \(\langle n_1, \ldots, n_k \rangle \) quantifier \(Q \) associates with each \(M \) a local type \(\langle n_1, \ldots, n_k \rangle \) quantifier \(Q_M \): a \(k \)-ary relation between relations (of the corresponding arities) over \(M \).

- Here we will mostly consider types \(\langle 1, 1 \rangle \) and \(\langle 1 \rangle \).
Quantifiers

- By analyzing some simple sentences we have almost arrived a general notion of quantifier.
- There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.
- The type notation adapts to this: type $\langle n_1, \ldots, n_k \rangle$ stands for a sequence of relations R_1, \ldots, R_k (over some M) such that R_i is n_i-ary.
- Thus:

Definition

A **global type** $\langle n_1, \ldots, n_k \rangle$ quantifier Q associates with each M a **local type** $\langle n_1, \ldots, n_k \rangle$ quantifier Q_M: a k-ary relation between relations (of the corresponding arities) over M.

- Here we will mostly consider types $\langle 1, 1 \rangle$ and $\langle 1 \rangle$.
- In English, they are denotations of **Dets** and **NPs**, respectively.
Quantifiers

- By analyzing some simple sentences we have almost arrived a general notion of quantifier.
- There is no reason to restrict to just one or two arguments, or to only consider set arguments; they could be relations.
- The type notation adapts to this: type $\langle n_1, \ldots, n_k \rangle$ stands for a sequence of relations R_1, \ldots, R_k (over some M) such that R_i is n_i-ary.
- Thus:

Definition

A global type $\langle n_1, \ldots, n_k \rangle$ quantifier Q associates with each M a local type $\langle n_1, \ldots, n_k \rangle$ quantifier Q_M: a k-ary relation between relations (of the corresponding arities) over M.

- Here we will mostly consider types $\langle 1, 1 \rangle$ and $\langle 1 \rangle$.
- In English, they are denotations of Dets and NPs, respectively.
- Different syntactic categories may be used, but a productive system of expressions denoting type $\langle 1, 1 \rangle$ quantifiers seems common to all languages.
Some type $\langle 1 \rangle$ quantifiers

From logic:

- $\forall_M(B) \iff B = M$ (‘everything’)
- $\exists_M(B) \iff B \neq \emptyset$ (‘something’)
- $(\exists_{\geq 5})_M(B) \iff |B| \geq 5$ (‘at least 5 things’)
- $(Q_{\aleph_0})_M(B) \iff B$ is infinite
- $(Q_{\aleph_1})_M(B) \iff B$ is uncountable
- $(Q_{\text{even}})_M(B) \iff |B|$ is even
- $(Q^R)_M(B) \iff |B| > |M - B|$ (the Rescher quantifier)

Proper names (Montagovian individuals):

- $(I_a)_M(B) \iff a \in B$

NP denotations:

- $(\text{three}^A)_M(B) \iff |A \cap B| = 3$
- $(\text{most}^A)_M(B) \iff |A \cap B| > |A - B|$
Some type \(\langle 1, 1 \rangle \) quantifiers

From Aristotle:
- \(\text{all}_M(A, B) \iff A \subseteq B \)
- \(\text{some}_M(A, B) \iff A \cap B \neq \emptyset \)
- \(\text{no}_M(A, B) \iff A \cap B = \emptyset \)

From model theory:
- \(I_M(A, B) \iff |A| = |B| \) (the H"artig quantifier)
- \(\text{more}_M(A, B) \iff |A| > |B| \)

From natural language:
- \(\text{between two and five}_M(A, B) \iff 2 \leq |A \cap B| \leq 5 \)
- \(\text{finitely many}_M(A, B) \iff A \cap B \text{ is finite} \)
- \(\text{all but at most three}_M(A, B) \iff |A - B| \leq 3 \)
- \(\text{most}_M(A, B) \iff |A \cap B| > |A - B| \)
- \(\text{more than } p/q \text{ of the}_M(A, B) \iff |A \cap B|/|A| > p/q \)
- \(\text{the ten}_M(A, B) \iff |A| = 10 \& A \subseteq B \)
- \(\text{no } - \text{ except John}_M(A, B) \iff A \cap B = \{j\} \)
- \(\text{Mary’s}_M(A, B) \iff \emptyset \neq \{b \in A : R(m, b)\} \subseteq B \quad (R(x, y) \text{ iff } x \text{ ‘owns’ } y) \)
- \(\text{at least two of every girl’s}_M(A, B) \iff \text{girl} \cap \{a : \exists b \in A \ R(a, b)\} \subseteq \{a : |\{b \in A : R(a, b)\} \cap B| \geq 2\} \)
Boolean operations: conjunction and disjunction

There are obvious ways to form conjunctions and disjunctions of quantifiers. E.g. in the type \(\langle 1, 1 \rangle \) case:

- \((Q \land Q')_M(A, B) \iff Q_M(A, B) \text{ and } Q'_M(A, B) \)
- \((Q \lor Q')_M(A, B) \iff Q_M(A, B) \text{ or } Q'_M(A, B) \)
Boolean operations: conjunction and disjunction

- There are obvious ways to form **conjunctions** and **disjunctions** of quantifiers. E.g. in the type \(\langle 1, 1 \rangle \) case:
 - \((Q \land Q')_M(A, B) \iff Q_M(A, B) \land Q'_M(A, B)\)
 - \((Q \lor Q')_M(A, B) \iff Q_M(A, B) \lor Q'_M(A, B)\)

- Many languages freely allow this:
 1. (7) John and at least two students went to a movie
 2. (8) You will meet a tall dark stranger or three midgets.
Boolean operations: conjunction and disjunction

- There are obvious ways to form conjunctions and disjunctions of quantifiers. E.g. in the type \(\langle 1, 1 \rangle \) case:
 - \((Q \land Q')_M(A, B) \iff Q_M(A, B) \text{ and } Q'_M(A, B)\)
 - \((Q \lor Q')_M(A, B) \iff Q_M(A, B) \text{ or } Q'_M(A, B)\)

- Many languages freely allow this:
 - (7) John and at least two students went to a movie
 - (8) You will meet a tall dark stranger or three midgets.

- (7) illustrates the reason to treat proper names as type \(\langle 1 \rangle \) quantifiers.
There are obvious ways to form **conjunctions** and **disjunctions** of quantifiers. E.g in the type $\langle 1, 1 \rangle$ case:

- $$(Q \land Q')_M(A, B) \iff Q_M(A, B) \land Q'_M(A, B)$$
- $$(Q \lor Q')_M(A, B) \iff Q_M(A, B) \lor Q'_M(A, B)$$

Many languages freely allow this:

(7) John and at least two students went to a movie
(8) You will meet a tall dark stranger or three midgets.

(7) illustrates the reason to treat proper names as type $\langle 1 \rangle$ quantifiers.

It is a linguistic issue whether the class of Dets (NPs) in some language is **closed** under Boolean operations.
There are obvious ways to form conjunctions and disjunctions of quantifiers. For example, in the type $\langle 1, 1 \rangle$ case:

- $(Q \land Q')_M(A, B) \iff Q_M(A, B) \land Q'_M(A, B)$
- $(Q \lor Q')_M(A, B) \iff Q_M(A, B) \lor Q'_M(A, B)$

Many languages freely allow this:

1. John and at least two students went to a movie
2. You will meet a tall dark stranger or three midgets.

1. illustrates the reason to treat proper names as type $\langle 1 \rangle$ quantifiers.

It is a linguistic issue whether the class of Dets (NPs) in some language is closed under Boolean operations.

Or the class quantifiers denoted by Dets (NPs) in that language.
There are obvious ways to form conjunctions and disjunctions of quantifiers. E.g. in the type $\langle 1, 1 \rangle$ case:

- $(Q \land Q')_M(A, B) \iff Q_M(A, B) \land Q'_M(A, B)$
- $(Q \lor Q')_M(A, B) \iff Q_M(A, B) \lor Q'_M(A, B)$

Many languages freely allow this:

(7) John and at least two students went to a movie
(8) You will meet a tall dark stranger or three midgets.

(7) illustrates the reason to treat proper names as type $\langle 1 \rangle$ quantifiers.

It is a linguistic issue whether the class of Dets (NPs) in some language is closed under Boolean operations.

Or the class quantifiers denoted by Dets (NPs) in that language.

(Discussion in PW chs. 3.2.3, 4.3, and 4.5.5.) Compare:

(9) *Not most students smoke
(10) At most half of the students smoke
Languages have different ways of expressing negation, but logically there are two distinct ways of negating a quantifier.
Boolean operations: negation

- Languages have different ways of expressing negation, but logically there are two distinct ways of negating a quantifier.
- Here is the type $\langle 1, 1 \rangle$ case:

Definition

(a) outer negation: $(\neg Q)_M(A, B) \iff \neg Q_M(A, B)$

(b) inner negation: $(Q\neg)_M(A, B) \iff Q_M(A, M - B)$ (VP negation)

(c) dual: $Q^d =_{def} \neg(Q\neg) [= (\neg Q)\neg]$
Boolean operations: negation

- Languages have different ways of expressing negation, but logically there are two distinct ways of negating a quantifier.
- Here is the type ⟨1, 1⟩ case:

Definition

(a) outer negation: \((\neg Q)_M(A, B) \iff \text{not } Q_M(A, B)\)
(b) inner negation: \((Q\neg)_M(A, B) \iff Q_M(A, M - B)\) (VP negation)
(c) dual: \(Q^d =_{\text{def}} \neg(Q\neg) \equiv (\neg Q)\neg\)

- NB \(\neg\neg Q = Q\neg\neg = (Q^d)^d = Q\), so \(\neg(Q^d) = Q\neg\), \((Q\neg)^d = \neg Q\), etc.
Boolean Operations on Quantifiers

Boolean operations: negation

- Languages have different ways of expressing negation, but logically there are two distinct ways of negating a quantifier.

- Here is the type \(\langle 1, 1 \rangle \) case:

Definition

(a) outer negation: \((\neg Q)_M(A, B) \iff \text{not } Q_M(A, B)\)

(b) inner negation: \((Q\neg)_M(A, B) \iff Q_M(A, M - B)\) (VP negation)

(c) dual: \(Q^d =_{\text{def}} \neg(Q\neg) \equiv (\neg Q)\neg\)

- NB \(\neg\neg Q = Q\neg\neg = (Q^d)^d = Q\), so \(\neg(Q^d) = Q\neg\), \((Q\neg)^d = \neg Q\), etc.

- Compare

 (11) Not every student passed the exam
 (12) Every student didn’t pass the exam (ambiguous)
 (13) It is not the case that some student passed the exam
 (14) Some student didn’t pass the exam
Languages have different ways of expressing negation, but logically there are two distinct ways of negating a quantifier.

Here is the type \(\langle 1, 1 \rangle \) case:

Definition

(a) **outer negation**: \((\neg Q)_M(A, B) \iff \text{not } Q_M(A, B) \)

(b) **inner negation**: \((Q\neg)_M(A, B) \iff Q_M(A, M-B) \) (VP negation)

(c) **dual**: \(Q^d =_{\text{def}} \neg (Q\neg) \) \[= (\neg Q)\neg \]

NB \(\neg\neg Q = Q\neg\neg = (Q^d)^d = Q \), so \(\neg(Q^d) = Q\neg \), \((Q\neg)^d = \neg Q \), etc.

Compare

(11) Not every student passed the exam

(12) Every student didn’t pass the exam (ambiguous)

(13) It is not the case that some student passed the exam

(14) Some student didn’t pass the exam

\[0 = \neg 1 \]

where 1 is the **trivially true** quantifier \(1_M(A, B) \) for all \(A, B \subseteq M \).
The (modern) square of opposition

Q and its negations can be arranged in a familiar way:

- **all** and **no** are **inner negation**
- **dual** and **not all** are **outer negation**
- **some** and **dual** are **dual negation**
Aristotle’s square is slightly different:

- **A** (affirmative) - universal
- **E** (negative) - no
- **I** (subaltern) - some
- **O** (not all) - not all

Contradictory

Contrary

Subcontrary

Subaltern
Comparing the squares

It may seem that the differences are negligible, and that if we drop the existential import, or restrict attention to non-empty arguments, they are the same.
Comparing the squares

- It may seem that the differences are negligible, and that if we drop the existential import, or restrict attention to non-empty arguments, they are the same.

- (This is how many people see it.)
Comparing the squares

- It may seem that the differences are negligible, and that if we drop the existential import, or restrict attention to non-empty arguments, they are the same.
- (This is how many people see it.)
- But this is far from true. The difference is the relations along the sides:
 - \(\varphi \) and \(\psi \) are \((\text{sub})\text{contrary}\) iff both cannot be true (false).
 - \(\psi \) is \text{subalternate} to \(\varphi \) iff it is implied by \(\varphi \).
Comparing the squares

- It may seem that the differences are negligible, and that if we drop the existential import, or restrict attention to non-empty arguments, they are the same.

- (This is how many people see it.)

- But this is far from true. The difference is the relations along the sides:
 - \(\varphi \) and \(\psi \) are (sub)contrary iff both cannot be true (false).
 - \(\psi \) is subalternate to \(\varphi \) iff it is implied by \(\varphi \).

- The difference is clear as soon as we consider squares of other quantifiers.
Another square

all but at most five A are B \hspace{1cm} at most five A are B
\[|A - B| \leq 5 \hspace{1cm} |A \cap B| \leq 5 \]

at least six A are B \hspace{1cm} “all but at least six A are B”
\[|A \cap B| \geq 6 \hspace{1cm} |A - B| \geq 6 \]

NB For example, *all but at most five* (A, B) and *at most five* (A, B) are not contraries if $|A| < 10$.

More on the square

Define:

\[\text{square}(Q) = \{ Q, \neg Q, Q\neg, Q^d \} \]

Fact

(a) \(\text{square}(0) = \text{square}(1) = \{0, 1\} \).
(b) If \(Q \) is non-trivial, so are the other quantifiers in its square.
(c) If \(Q' \in \text{square}(Q) \), then \(\text{square}(Q) = \text{square}(Q') \). So any two squares are either identical or disjoint.
(d) \(\text{square}(Q) \) has either 2 or 4 members.
More on the square

- Define:
 \[\text{square}(Q) = \{Q, \neg Q, Q\neg, Q^d\} \]

Fact

(a) \(\text{square}(0) = \text{square}(1) = \{0, 1\} \).

(b) If \(Q\) is non-trivial, so are the other quantifiers in its square.

(c) If \(Q' \in \text{square}(Q)\), then \(\text{square}(Q) = \text{square}(Q')\). So any two squares are either identical or disjoint.

(d) \(\text{square}(Q)\) has either 2 or 4 members.

About (d): Since \(Q \neq \neg Q\), we get a 2-square exactly when \(Q = Q\neg\), as for:

\[Q_M(A, B) \iff |A \cap B| = |A - B| = 5 \]
More on the square

- Define:

\[\text{square}(Q) = \{ Q, \neg Q, Q \downarrow, Q^d \} \]

Fact

(a) \(\text{square}(0) = \text{square}(1) = \{0, 1\} \).
(b) If \(Q \) is non-trivial, so are the other quantifiers in its square.
(c) If \(Q' \in \text{square}(Q) \), then \(\text{square}(Q) = \text{square}(Q') \). So any two squares are either identical or disjoint.
(d) \(\text{square}(Q) \) has either 2 or 4 members.

About (d): Since \(Q \neq \neg Q \), we get a 2-square exactly when \(Q = Q \downarrow \), as for:

\[Q_M(A, B) \iff |A \cap B| = |A - B| = 5 \]

- A more interesting example is due to Keenan:

15. Between one-third and two-thirds of the students passed
16. Between one-third and two-thirds of the students didn’t pass
More on the square

- Define:
 \[\text{square}(Q) = \{ Q, \neg Q, Q\neg, Q^d \} \]

Fact

(a) \(\text{square}(0) = \text{square}(1) = \{0, 1\} \).
(b) If \(Q \) is non-trivial, so are the other quantifiers in its square.
(c) If \(Q' \in \text{square}(Q) \), then \(\text{square}(Q) = \text{square}(Q') \). So any two squares are either identical or disjoint.
(d) \(\text{square}(Q) \) has either 2 or 4 members.

About (d): Since \(Q \neq \neg Q \), we get a 2-square exactly when \(Q = Q\neg \), as for:

\[Q_M(A, B) \iff |A \cap B| = |A - B| = 5 \]

- A more interesting example is due to Keenan:
 (15) Between one-third and two-thirds of the students passed
 (16) Between one-third and two-thirds of the students didn’t pass
- These are equivalent! (Exercise; we come back to a principled explanation)
Type $\langle 1, 1 \rangle$ vs. type $\langle 1 \rangle$ quantifiers

- We can go from $\langle 1, 1 \rangle$ to type $\langle 1 \rangle$ by fixing or freezing the first argument. PW ch. 4.5.5.2 argue that this should be defined as follows:
Type \(\langle 1, 1 \rangle \) vs. type \(\langle 1 \rangle \) quantifiers

- We can go from \(\langle 1, 1 \rangle \) to type \(\langle 1 \rangle \) by fixing or freezing the first argument. PW ch. 4.5.5.2 argue that this should be defined as follows:

- Let \(Q \) be of type \(\langle 1, 1 \rangle \) and \(A \) any set (not necessarily a subset of \(M \)):
 \[
 (Q^A)_M(B) \iff Q_{M \cup A}(A, B)
 \]
Type $\langle 1, 1 \rangle$ vs. type $\langle 1 \rangle$ quantifiers

- We can go from $\langle 1, 1 \rangle$ to type $\langle 1 \rangle$ by fixing or freezing the first argument. PW ch. 4.5.5.2 argue that this should be defined as follows:

- Let Q be of type $\langle 1, 1 \rangle$ and A any set (not necessarily a subset of M):
 \[(Q^A)_M(B) \iff Q_{M \cup A}(A, B)\]

- As we saw, this gives type $\langle 1 \rangle$ denotations of quantified NPs: most students, all but three cats, etc.
We can go from \langle 1, 1 \rangle to type \langle 1 \rangle by fixing or **freezing** the first argument. PW ch. 4.5.5.2 argue that this should be defined as follows:

Let \(Q \) be of type \langle 1, 1 \rangle and \(A \) any set (not necessarily a subset of \(M \)):

\[
(Q^A)_M(B) \iff Q_{M \cup A}(A, B)
\]

As we saw, this gives type \langle 1 \rangle denotations of quantified NPs: most students, all but three cats, etc.

In the other direction we can use **relativization**: Let \(Q \) be of type \langle 1 \rangle:

\[
(Q^{\text{rel}})_M(A, B) \iff Q_A(A \cap B)
\]
Type $\langle 1, 1 \rangle$ vs. type $\langle 1 \rangle$ quantifiers

- We can go from $\langle 1, 1 \rangle$ to type $\langle 1 \rangle$ by fixing or freezing the first argument. PW ch. 4.5.5.2 argue that this should be defined as follows:
 - Let Q be of type $\langle 1, 1 \rangle$ and A any set (not necessarily a subset of M):
 $$(Q^A)_M(B) \iff Q_{M\cup A}(A, B)$$
 - As we saw, this gives type $\langle 1 \rangle$ denotations of quantified NPs: most students, all but three cats, etc.

- In the other direction we can use relativization: Let Q be of type $\langle 1 \rangle$:
 $$(Q^{rel})_M(A, B) \iff Q_A(A \cap B)$$
 - This is a common operation in logic: introduce an extra (set) argument that serves as the universe. But there are many examples from language:
 - $all = \forall^{rel}$
 - $some = \exists^{rel}$
 - $at least five = \exists_{\geq 5}^{rel}$
 - $most = (Q^R)^{rel}$ (Q^R is the Rescher quantifier)
 - $infinitely many = \exists_{\mathbb{N}_0}^{rel}$
 - $an even number of = Q_{even}^{rel}$
We have construed quantifiers as second-order relations (on each universe).
We have construed quantifiers as second-order relations (on each universe).

This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation R, define χ_R:

$$\chi_R(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } R(x_1, \ldots, x_n) \\ 0 & \text{otherwise} \end{cases}$$
We have construed quantifiers as second-order relations (on each universe).

This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation R, define χ_R:

$$\chi_R(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } R(x_1, \ldots, x_n) \\ 0 & \text{otherwise} \end{cases}$$

Many linguists (Barwise and Cooper, Keenan, . . .) follow this; e.g. type $\langle 1, 1 \rangle$ quantifiers are functions from sets to type $\langle 1 \rangle$ quantifiers, which in turn are functions from sets to truth values:

- type $\langle 1 \rangle$: $Q_M(B) = 1$ instead of $Q_M(B)$
- type $\langle 1, 1 \rangle$: $Q_M(A)(B) = 1$ instead of $Q_M(A, B)$
We have construed quantifiers as second-order relations (on each universe).

This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation R, define χ_R:

$$\chi_R(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } R(x_1, \ldots, x_n) \\ 0 & \text{otherwise} \end{cases}$$

Many linguists (Barwise and Cooper, Keenan, . . .) follow this; e.g. type $\langle 1, 1 \rangle$ quantifiers are functions from sets to type $\langle 1 \rangle$ quantifiers, which in turn are functions from sets to truth values:

- type $\langle 1 \rangle$: $Q_M(B) = 1$ instead of $Q_M(B)$
- type $\langle 1, 1 \rangle$: $Q_M(A)(B) = 1$ instead of $Q_M(A, B)$

Lindström took quantifiers to be classes of models (of that type), e.g. $(M, A, B) \in Q$ instead of $Q_M(A, B)$
Relations, functions, or classes of models?

- We have construed quantifiers as second-order relations (on each universe).
- This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation R, define χ_R:
 \[
 \chi_R(x_1, \ldots, x_n) = \begin{cases}
 1 & \text{if } R(x_1, \ldots, x_n) \\
 0 & \text{otherwise}
 \end{cases}
 \]
- Many linguists (Barwise and Cooper, Keenan, . . .) follow this; e.g. type $\langle 1, 1 \rangle$ quantifiers are functions from sets to type $\langle 1 \rangle$ quantifiers, which in turn are functions from sets to truth values:
 - type $\langle 1 \rangle$: $Q_M(B) = 1$ instead of $Q_M(B)$
 - type $\langle 1, 1 \rangle$: $Q_M(A)(B) = 1$ instead of $Q_M(A, B)$
- Lindström took quantifiers to be classes of models (of that type), e.g. $(M, A, B) \in Q$ instead of $Q_M(A, B)$
- In one sense, this is just different notations for the same thing.
Relations, functions, or classes of models?

- We have construed quantifiers as second-order relations (on each universe).
- This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation \(R \), define \(\chi_R \):
 \[
 \chi_R(x_1, \ldots, x_n) = \begin{cases}
 1 & \text{if } R(x_1, \ldots, x_n) \\
 0 & \text{otherwise}
 \end{cases}
 \]
- Many linguists (Barwise and Cooper, Keenan, . . .) follow this; e.g. type \(\langle 1, 1 \rangle \) quantifiers are functions from sets to type \(\langle 1 \rangle \) quantifiers, which in turn are functions from sets to truth values:
 - type \(\langle 1 \rangle \): \(Q_M(B) = 1 \) instead of \(Q_M(B) \)
 - type \(\langle 1, 1 \rangle \): \(Q_M(A)(B) = 1 \) instead of \(Q_M(A, B) \)
- Lindström took quantifiers to be classes of models (of that type), e.g.
 \((M, A, B) \in Q \) instead of \(Q_M(A, B) \)
- In one sense, this is just different notations for the same thing.
- But notation can be important for intuitions, and for finding generalizations.
We have construed quantifiers as second-order relations (on each universe).

This is essentially Frege’s view, except he thought of relations as (characteristic) functions: Given a relation \(R \), define \(\chi_R \):

\[
\chi_R(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } R(x_1, \ldots, x_n) \\
0 & \text{otherwise}
\end{cases}
\]

Many linguists (Barwise and Cooper, Keenan, . . .) follow this; e.g. type \(\langle 1, 1 \rangle \) quantifiers are functions from sets to type \(\langle 1 \rangle \) quantifiers, which in turn are functions from sets to truth values:

- type \(\langle 1 \rangle \): \(Q_M(B) = 1 \) instead of \(Q_M(B) \)
- type \(\langle 1, 1 \rangle \): \(Q_M(A)(B) = 1 \) instead of \(Q_M(A, B) \)

Lindström took quantifiers to be classes of models (of that type), e.g.

\((M, A, B) \in Q \) instead of \(Q_M(A, B) \)

In one sense, this is just different notations for the same thing.

But notation can be important for intuitions, and for finding generalizations.

E.g. wh-questions can be construed as functions whose values are sets rather than truth values: “Which students passed the exam?”