University of Helsinki Mathematical Physics
Centre of Excellence in Analysis and Dynamics Research
Department of Mathematics and Statistics
Faculty of Science

Mikko Stenlund

Ph.D., Adjunct Professor of Mathematics

Email: firstname.lastname(at)

Mikko Stenlund


I work at the Center of Excellence in Analysis and Dynamics Research, focusing on dynamical systems, probability and mathematical physics.

Previously, I was involved in the ERC project Mathematical Physics of Out-of-Equilibrium Systems (MPOES), and also worked at the University of Rome "Tor Vergata" in Italy: Macroscopic Laws and Dynamical Systems (MALADY).
Before that, I spent several years at Courant Institute and at Rutgers University in the United States of America.

I am an Adjunct Professor of Mathematics at the University of Helsinki and at the University of Jyväskylä.

For their notable support, I thank Emil Aaltosen Säätiö, the Jane and Aatos Erkko Foundation, the Academy of Finland, the Finnish Academy of Science and Letters, and the Finnish Cultural Foundation.


(See also my author pages on the arXiv and on Google Scholar.)
  • Interesting things to follow soon!

  1. A coupling approach to random circle maps expanding on the average. Stochastics and Dynamics 14, No. 4 (2014) 1450008 (29 pages). (With Henri Sulku) [arXiv][Article]

  2. A vector-valued almost sure invariance principle for Sinai billiards with random scatterers. Commun. Math. Phys. 325, 879-916 (2014). [arXiv][Article]
    (See also my talk at Courant in May 2012. [Slides])

  3. Dispersing Billiards with Moving Scatterers. Commun. Math. Phys. 322, 909-955 (2013). (With Lai-Sang Young and Hongkun Zhang) [arXiv][Article]

  4. A local limit theorem for random walks in balanced environments. Electronic Communications in Probability 18 (2013), no. 19, 1-13. [arXiv][Article]

  5. Positive Lyapunov exponent by a random perturbation, Dynamical Systems: An International Journal, 27, Issue 2, 2012, 239-252. (With Zeng Lian) [arXiv][Article]

  6. A Dilution Test for the Convergence of Subseries of a Monotone Series, Journal of Classical Analysis 1, Number 1 (2012), 17-22. (With Lasse Leskelä) [arXiv][Article]

  7. A local limit theorem for a transient chaotic walk in a frozen environment, Stochastic Processes and their Applications 121 (2011) 2818-2838. (With Lasse Leskelä) [arXiv][Article]

  8. Non-Stationary Compositions of Anosov Diffeomorphisms, Nonlinearity 24 (2011) 2991-3018. [arXiv][Article]

  9. Multi-Gaussian Modes of Diffusion in a Quenched Random Medium, Phys. Rev. E 82, 041125 (2010) [6 pages]. (With Tapio Simula) [arXiv][Article]

  10. An Expansion of the Homoclinic Splitting Matrix for the Rapidly, Quasiperiodically, Forced Pendulum. J. Math. Phys. 51, 072902 (2010). [arXiv][Article]

  11. A Strong Pair Correlation Bound implies the CLT for Sinai Billiards. Journal of Statistical Physics 140 (2010), no. 1, 154-169. [arXiv][Article]

  12. From Limit Cycles to Strange Attractors, Commun. Math. Phys. 296, 215-249 (2010). (With William Ott) (With William Ott) [arXiv][Article]

  13. Deterministic Walks in Quenched Random Environments of Chaotic Maps. J. Phys. A: Math. Theor. 42 (2009) 245101 (14 pp). (With Tapio Simula) [arXiv][Article]

  14. Memory Loss for Time-Dependent Dynamical Systems. Math. Res. Lett. 16 (2009), no. 3, 463-475 (With William Ott and Lai-Sang Young) [arXiv][Article]

  15. Quenched CLT for Random Toral Automorphism. Discrete and Continuous Dynamical Systems A. 24 (2009), no. 2, 331-348. (With Arvind Ayyer and Carlangelo Liverani) [arXiv][Article]

  16. Exponential Decay of Correlations for Randomly Chosen Hyperbolic Toral Automorphisms. Chaos 17 (2007), no. 4, 043116 (7 pp). (With Arvind Ayyer) [arXiv][Article]

  17. Construction of Whiskers for the Quasiperiodically Forced Pendulum. Rev. Math. Phys. 19 (2007), no. 8, 823-877. [arXiv][Article]

  18. Homoclinic Splitting without Trees, Ph.D. thesis, University of Helsinki, May 2006. []

  19. A Characterization of the Parabola. Math. Gaz. 89 (Nov 2005), no. 516, 507-511.

  20. On the Tangent Lines of a Parabola. College Math. J. 32 (2001), no. 3, 194-196.

  • My Master's Thesis was titled "KAM Theorem and Renormalization" [PS].


[Arvind Ayyer] [Neil Dobbs] [Lasse Leskelä] [Zeng Lian] [Carlangelo Liverani] [William Ott] [Tapio Simula] [Henri Sulku] [Lai-Sang Young] [Hongkun Zhang]



  • Please contact me if you are interested in thesis work at any level, in the field of dynamical systems! I will be happy to advise students also at the University of Jyväskylä.

    Otathan yhteyttä, jos olet kiinnostunut opinnäytteen laatimisesta dynaamisiin systeemeihin liittyen! Ohjaan mielelläni opiskelijoita myös Jyväskylän yliopistossa.


  • Fall 2008: Algebra & Calculus, NYU.

Postdoc Seminar:

  • I am looking for recent PhDs to speak in the Postdoc Seminar. Drop me a line if interested. (The adjective "recent" is to be interpreted loosely.)