Mixing and reaction efficiency in closed domains

S. Berti 1 D. Vergni 2 F. Visconti 3 A. Vulpiani 3,4

1 Dipartimento di Fisica Generale, Università di Torino, Torino, Italy
2 Istituto Applicazioni del Calcolo (IAC) - CNR, Roma, Italy
3 Dipartimento di Fisica, Università "La Sapienza", Roma, Italy
4 Istituto Nazionale di Fisica della Materia (UdR), SMC (Roma 1), Istituto Nazionale di Fisica Nucleare (Roma 1), Roma, Italy

International Cross - Disciplinary Symposium on Physics and Biology

3-7/3/2005 Oslo, Norway
Outline

1. Advection - Reaction - Diffusion
2. Inert transport
 - Mixing efficiency
 - Flow models
 - Numerical results
3. Reactive case
 - Numerical results
4. Conclusions
Assumptions

- **Reaction term**: \(f(\theta) = \theta(1 - \theta) \) (FKPP-like \(\Rightarrow \) pulled fronts);

- **Incompressibility condition**:
 \[\nabla \cdot \mathbf{u} = 0 \Rightarrow \mathbf{u} = (\partial_y \psi, -\partial_x \psi), \]
 being \(\psi = \psi(x, t) \) the stream function;

- **Steep initial condition**:
 \(\theta(x, 0) \to 1 \) for \(x \to -\infty \),
 \(\theta(x, 0) \to 0 \) for \(x \to +\infty \) (exp. fast);
Advection - Reaction - Diffusion
Inert transport
Reactive case
Conclusions

Asymptotic situation (ARD2)

L linear domain size

ℓ_0 typical length of the flow

front speed: $V(t) = \frac{1}{L_y \Delta t} \int dx dy [\theta(x, y, t + \Delta t) - \theta(x, y, t)]$

effective diffusion coeff.: $D_{ij}^E = \lim_{t \to \infty} \frac{1}{2t} \langle (x_i - <x_i>)(x_j - <x_j>) \rangle$

- $u = 0 \Rightarrow V_0 = 2 \sqrt{\frac{D}{\tau_r}} f'(0) = 2 \sqrt{\frac{D}{\tau_r}}$
- $u \neq 0 \Rightarrow V_f \leq 2 \sqrt{\frac{D_E}{\tau_r}}$ ($D^E \equiv D_{11}^E$)

- D^E depends on the velocity field
- **Typically:** $D^E \gg D \Rightarrow V_f > V_0$
Inert tracers

\[\begin{align*}
\text{u} &= 0 \\
\frac{\partial t}{\partial t} \theta &= D \nabla^2 \theta \\
\text{u} &\neq 0 \\
\frac{\partial t}{\partial t} \theta + \text{u} \cdot \nabla \theta &= D \nabla^2 \theta
\end{align*} \]
Advection - Reaction - Diffusion
Inert transport
Reactive case
Conclusions

Inert tracers
\[u = 0 \]
\[\partial_t \theta = D \nabla^2 \theta \]
\[u \neq 0 \]
\[\partial_t \theta + u \cdot \nabla \theta = D \nabla^2 \theta \]

Reactive particles
\[u = 0 \]
\[\partial_t \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta) \]
\[u \neq 0 \]
\[\partial_t \theta + u \cdot \nabla \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta) \]
Inert transport

\[\partial_t \theta + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta \]
Inert transport

\[\partial_t \theta + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta \]

\[\dot{x} = \mathbf{u}(\mathbf{x}, t) + \sqrt{2D} \eta(t) \]

\[\langle \eta \rangle = 0 \]

\[\langle \eta_i(t) \eta_j(t') \rangle = \delta_{ij} \delta(t - t') \]
Inert transport

\[\partial_t \theta + u \cdot \nabla \theta = D \nabla^2 \theta \quad \leftrightarrow \quad \dot{x} = u(x, t) + \sqrt{2D} \eta(t) \]

\[< \eta > = 0 \]

\[\langle (\eta_i(t)\eta_j(t')) \rangle = \delta_{ij} \delta(t - t') \]

\[u = (\partial_y \psi, -\partial_x \psi) \quad \text{(incompressibility)} \]

\[\psi(x, y, t) = \psi_0(x, y) + \epsilon \psi_1(x, y, t) \]
Inert transport

\[
\partial_t \theta + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta \quad \leftrightarrow \quad \dot{\mathbf{x}} = \mathbf{u}(\mathbf{x}, t) + \sqrt{2D} \eta(t)
\]

\[
< \eta >= 0 \\
\langle (\eta_i(t)\eta_j(t')) \rangle = \delta_{ij}\delta(t-t')
\]

\[
\mathbf{u} = (\partial_y \psi, -\partial_x \psi) \quad \text{(incompressibility)}
\]

\[
\psi(x, y, t) = \psi_0(x, y) + \epsilon \psi_1(x, y, t)
\]

where \(\psi_1 \) is time-periodic (T) \(\Rightarrow \) Lagrangian Chaos

\[
\begin{align*}
\psi(x, y, t) &= \psi_0(x, y) + \epsilon \psi_1(x, y, t) \\
\end{align*}
\]

where \(\psi_1 \) is time-periodic (T) \(\Rightarrow \) Lagrangian Chaos
Outline

1. Advection - Reaction - Diffusion

2. Inert transport
 - Mixing efficiency
 - Flow models
 - Numerical results

3. Reactive case
 - Numerical results

4. Conclusions
what is the characteristic time τ_m of the mixing process?
what is the characteristic time τ_m of the mixing process?

<table>
<thead>
<tr>
<th>$r \ll \ell_0$</th>
<th>$r \gg \ell_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{m1} \sim \frac{1}{\lambda} \log \frac{L}{\delta_0} \sim \frac{1}{\lambda}$</td>
<td>$\tau_{m2} \sim \frac{L^2}{D^E}$</td>
</tr>
<tr>
<td>$</td>
<td>\delta x(t)</td>
</tr>
</tbody>
</table>
what is the characteristic time τ_m of the mixing process?

<table>
<thead>
<tr>
<th>$r \ll \ell_0$</th>
<th>$r \gg \ell_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{m_1} \sim \frac{1}{\lambda} \log \frac{L}{\delta_0} \sim \frac{1}{\lambda}$</td>
<td>$\tau_{m_2} \sim \frac{L^2}{D^E}$</td>
</tr>
</tbody>
</table>

...where...

$|\delta x(t)| \sim |\delta x(0)| e^{\lambda t}$

$\partial_t \theta = D^E \nabla^2 \theta$

let us observe that...

- $\lambda = \lambda(x) \rightarrow$ better to use $h_{KS} = \int_{\Omega} \lambda(x) d\mu(x)$;
- τ_{m_1} ignores the existence of barriers and the effect of noise (D);
- τ_{m_2} is appropriate only if $L \gg \ell_0$ and ignores transient effects.
Introduce a coarse graining of the phase space Ω into N^M square cells of size Δ. $\Rightarrow P_i(t) = n_i(t) / N = 1 / N M \sum_{i=1}^{N M} \theta(P_i(t) - c N M); c \sim 0.25$.

t^α: $A(t^\alpha) \rightarrow \text{mixing time}$
Introduce a coarse graining of the phase space Ω into N_M square cells of size Δ
Introduce a coarse graining of the phase space Ω into N_M square cells of size Δ

$$\mathcal{N} \gg 1 \text{ particles } \implies P_i(t) = \frac{n_i(t)}{\mathcal{N}}$$
Introduce a coarse graining of the phase space \(\Omega \) into \(N_M \) square cells of size \(\Delta \)

\[
\mathcal{N} \gg 1 \text{ particles} \implies P_i(t) = \frac{n_i(t)}{\mathcal{N}}
\]

\[
A(t) = \frac{1}{N_M} \sum_{i=1}^{N_M} \theta \left(P_i(t) - \frac{c}{N_M} \right) ; \quad c \sim 0.25
\]
Introduce a coarse graining of the phase space Ω into N_M square cells of size Δ

$N \gg 1$ particles $\Rightarrow P_i(t) = \frac{n_i(t)}{N}$

$$A(t) = \frac{1}{N_M} \sum_{i=1}^{N_M} \theta \left(P_i(t) - \frac{c}{N_M} \right); \quad c \sim 0.25$$

$t_\alpha : A(t_\alpha) = \alpha$
Introduce a coarse graining of the phase space Ω into N_M square cells of size Δ

$$\mathcal{N} \gg 1 \text{ particles} \Rightarrow P_i(t) = \frac{n_i(t)}{\mathcal{N}}$$

$$A(t) = \frac{1}{N_M} \sum_{i=1}^{N_M} \theta \left(P_i(t) - \frac{c}{N_M} \right); \quad c \sim 0.25$$

$$t_\alpha : A(t_\alpha) = \alpha \quad \text{mixing time}$$
Outline

1. Advection - Reaction - Diffusion
2. Inert transport
 - Mixing efficiency
 - Flow models
 - Numerical results
3. Reactive case
 - Numerical results
4. Conclusions
The stream function is:
\[
\psi(x, y, t) = -\tanh \left(\frac{y - B(t) \cos kx}{\sqrt{1 + k^2 B(t)^2 \sin^2 kx}} \right) + cy
\]

\[
B(t) = B_0 + \epsilon \cos(\omega t + \phi)
\]

The spatial structure of the stationary flow is:

\[
B_0 = 1.2 \\
k = 4\pi / 15 \\
c = 0.12
\]
Cross-stream transport can be characterized through the overlap of the resonances criterion:

\[\epsilon_c = \epsilon_c(\omega) \]

\[\epsilon < \epsilon_c \Rightarrow \text{local chaos} \]

\[\epsilon > \epsilon_c \Rightarrow \text{global chaos} \]

\[\omega_0 = 0.25 \]

\[\phi = \pi/2 \]

Global chaos allows cross-stream transport.
The stream function is:

\[\psi(x, y, t) = \frac{1}{2} [(y + 1) \cos \phi(t) + (y - 1) \sin \phi(t)](1 - x^2)(1 - y^2) \]

\[\phi(t) = \frac{2\pi t}{T} \]

The spatial structure of the stationary flow is:

\[V_{top} = \cos(\Phi(t)) \]
\[V_{bot} = \sin(\Phi(t)) \]
\[V_{top}^2 + V_{bot}^2 = 1 \]
Outline

1. Advection - Reaction - Diffusion

2. Inert transport
 - Mixing efficiency
 - Flow models
 - Numerical results

3. Reactive case
 - Numerical results

4. Conclusions
Dispersion of tracers \((D = 0)\)

- **local chaos**
- **global chaos**
Dispersion of tracers \((D = 0)\)

Local chaos

\[\omega = 0.625 \]
\[\epsilon = 0.03 \]

Global chaos

\[\omega = 0.625 \]
\[\epsilon = 0.24 \]

Berti, Vergni, Visconti, Vulpiani

Mixing and reaction efficiency in closed domains
Dispersion of tracers \((D = 0)\) (AD7)

Local chaos
\[
\begin{align*}
\omega &= 0.625 \\
\epsilon &= 0.03
\end{align*}
\]

Global chaos
\[
\begin{align*}
\omega &= 0.625 \\
\epsilon &= 0.24
\end{align*}
\]

\(T = 1\) and \(T = 16\) (Stokes)
Mixing efficiency
Flow models
Numerical results

Mixing (AD8)

Occupied area

$D = 0.001$

$D = 0.004$

$D = 0.001$

$D = 0.004$

$D = \frac{0.001}{0.004}$

Mixing and reaction efficiency in closed domains
Mixing efficiency
Flow models
Numerical results

Mixing (AD8)

Occupied area

Mixing times t_α: $A(t_\alpha) = \alpha; \ \alpha = 0.9$

$D = 0.001$

$D = 0.002$

$D = 0.004$

Berti, Vergni, Visconti, Vulpiani

Mixing and reaction efficiency in closed domains
Mixing efficiency
Flow models
Numerical results

Mixing

Occupied area

Mixing times t_α: $A(t_\alpha) = \alpha; \alpha = 0.9$

Berti, Vergni, Visconti, Vulpiani

Mixing and reaction efficiency in closed domains
Reactive case

\[\partial_t \theta + u \cdot \nabla \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta) \]
Reactive case

\[\partial_t \theta + u \cdot \nabla \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta) \]

Discrete-time approach \(\rightarrow\) numerical integration 3-step process:

1. **backward diffusion**: \(x \rightarrow x - \sqrt{2D\Delta tw}\)
2. **backward advection**: \(x - \sqrt{2D\Delta tw} \rightarrow F_{\Delta t}^{-1}(x - \sqrt{2D\Delta tw})\)
3. **forward reaction**: \(\theta(t + \Delta t) = G_{\Delta t}(\theta(t))\)
Reactive case

$$\partial_t \theta + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta)$$

Discrete-time approach \rightarrow numerical integration 3-step process:

1. **backward diffusion**: $x \rightarrow x - \sqrt{2D\Delta t} w$

2. **backward advection**: $x - \sqrt{2D\Delta t} w \rightarrow F_{\Delta t}^{-1}(x - \sqrt{2D\Delta t} w)$

3. **forward reaction**: $\theta(t + \Delta t) = G_{\Delta t}(\theta(t))$

Berti, Vergni, Visconti, Vulpiani

Mixing and reaction efficiency in closed domains
Advection - Reaction - Diffusion
Inert transport
Reactive case
Conclusions
Numerical results

Reactive case

\[
\partial_t \theta + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta + \frac{1}{\tau_r} f(\theta)
\]

Discrete-time approach \(\rightarrow\) numerical integration 3-step process:

1. **backward diffusion**: \(x \rightarrow x - \sqrt{2D\Delta t}w\)
2. **backward advection**: \(x - \sqrt{2D\Delta t}w \rightarrow F_{\Delta t}^{-1}(x - \sqrt{2D\Delta t}w)\)
3. **forward reaction**: \(\theta(t + \Delta t) = G_{\Delta t}(\theta(t))\)

\[
x(t + \Delta t) = F_{\Delta t}(x(t)) + \sqrt{2D\Delta t}w(t) \quad \text{(lagrangian map)}
\]

\[
\theta(t + \Delta t) = G_{\Delta t}(\theta(t)) \quad \text{(reaction map)}
\]

\[
F_{\Delta t}(x) \simeq x + \mathbf{u}(x)\Delta t, \quad G_{\Delta t} \simeq \theta + \frac{\Delta t}{\tau_r} f(\theta)
\]

\[
\theta(x, t + \Delta t) = \left\langle G_{\Delta t} \left(\theta(F_{\Delta t}^{-1}(x - \sqrt{2D\Delta t}w(t)), t) \right) \right\rangle
\]

Berti, Vergni, Visconti, Vulpiani

Mixing and reaction efficiency in closed domains
Outline

1. Advection - Reaction - Diffusion
2. Inert transport
 - Mixing efficiency
 - Flow models
 - Numerical results
3. Reactive case
 - Numerical results
4. Conclusions
• **Asymptotic situation** \((L_x = 50 \quad \omega = 0.4 \quad \epsilon = 0.3 \quad \tau_r = 2)\)

Concentration field (MJ) (R2)
Concentration field (MJ) (R2)

- **Asymptotic situation** \((L_x = 50 \; \omega = 0.4 \; \epsilon = 0.3 \; \tau_r = 2) \)

- In a **non asymptotic situation** the evolution is **not** characterized by **front propagation**

local chaos
\[
\begin{align*}
L_x &= 15 \\
\omega &= 0.625 \\
\epsilon &= 0.03 \\
\tau_r &= 2
\end{align*}
\]

global chaos
\[
\begin{align*}
L_x &= 15 \\
\omega &= 0.625 \\
\epsilon &= 0.24 \\
\tau_r &= 2
\end{align*}
\]
how to measure the characteristic time of the reactive process (complete ARD eq.)?
how to measure the characteristic time of the reactive process (complete ARD eq.)?

"burnt" material $\longrightarrow \theta = 1$
"fresh" material $\longrightarrow \theta = 0$
Reaction efficiency

how to measure the characteristic time of the reactive process (complete ARD eq.)?

"burnt" material $\rightarrow \theta = 1$
"fresh" material $\rightarrow \theta = 0$

$$S(t) = \frac{1}{|\Omega|} \int_{\Omega} dx dy \theta(x, y, t)$$
Reaction efficiency

how to measure the characteristic time of the reactive process (complete ARD eq.)?

"burnt" material $\rightarrow \theta = 1$
"fresh" material $\rightarrow \theta = 0$

$$S(t) = \frac{1}{|\Omega|} \int_{\Omega} dx dy \theta(x, y, t)$$

$$t_\alpha : S(t_\alpha) = \alpha$$
Reaction efficiency

how to measure the characteristic time of the reactive process (complete ARD eq.)?

"burnt" material $\rightarrow \theta = 1$
"fresh" material $\rightarrow \theta = 0$

$$S(t) = \frac{1}{|\Omega|} \int_{\Omega} dx dy \theta(x, y, t)$$

$t_{\alpha} : S(t_{\alpha}) = \alpha$ ← burning time
Burnt area

\[D = 0.001 \]

\[D = 0.004 \]
Burnt area

Burning times \(t_\alpha \): \(S(t_\alpha) = \alpha; \ \alpha = 0.9 \)

\[
\begin{align*}
D &= 0.001 \\
D &= 0.002 \\
D &= 0.004
\end{align*}
\]
Numerical results

Burnt area

\[D = 0.001 \]

\[D = 0.004 \]

Burning times \(t_\alpha \): \(S(t_\alpha) = \alpha; \alpha = 0.9 \)

\[D = 0.001 \]
\[D = 0.002 \]
\[D = 0.004 \]

\[D = 0.0005 \]
\[D = 0.001 \]
\[D = 0.004 \]
Non asymptotic situation $L \sim \ell_0$

- In the **inert case** different dynamical regimes (local or global chaos) imply very different mixing properties.

- **The reactive case** is substantially unaffected by the presence of global chaos. The details of the velocity field have weak influence on the “burning” process, so that a more efficient mixing seems not to imply a better reaction efficiency.
M. Cencini, C. López, and D. Vergni

M. Abel, A. Celani, D. Vergni and A. Vulpiani
Front propagation in laminar flows

G. Boffetta, A. Celani, M. Cencini, G. Lacorata and A. Vulpiani
Nonasymptotic properties of transport and mixing
A. S. Bower
A simple kinematic mechanism for mixing fluid parcels across a meandering-jet

A. Vikhansky
Control of stretching rate in time periodic flows

C. López, D. Vergni and A. Vulpiani
Efficiency of a stirred reaction in a closed vessel